
Received December 11, 2021, accepted December 30, 2021, date of publication January 4, 2022, date of current version January 20, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3140091

Systematic Review of Security Vulnerabilities in
Ethereum Blockchain Smart Contract
SATPAL SINGH KUSHWAHA 1, SANDEEP JOSHI 1, (Senior Member, IEEE),
DILBAG SINGH 2, (Member, IEEE), MANJIT KAUR 2, (Member, IEEE),
AND HEUNG-NO LEE 2, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur 303007, India
2School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Heung-No Lee (heungno@gist.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP)
(NRF-2021R1A2B5B03002118) and this research was supported by the Ministry of Science and ICT (MSIT), South Korea, under the
ITRC (Information Technology Research Center) support program (IITP-2021-0-01835) supervised by the IITP (Institute of Information &
Communications Technology Planning & Evaluation).

ABSTRACT Blockchain is a revolutionary technology that enables users to communicate in a trust-less
manner. It revolutionizes the modes of business between organizations without the need for a trusted third
party. It is a distributed ledger technology based on a decentralized peer-to-peer (P2P) network. It enables
users to store data globally on thousands of computers in an immutable format and empowers users to deploy
small pieces of programs known as smart contracts. The blockchain-based smart contract enables auto
enforcement of the agreed terms between two untrusted parties. There are several security vulnerabilities
in Ethereum blockchain-based smart contracts, due to which sometimes it does not behave as intended.
Because a smart contract can hold millions of dollars as cryptocurrency, so these security vulnerabilities can
lead to disastrous losses. In this paper, a systematic review of the security vulnerabilities in the Ethereum
blockchain is presented. The main objective is to discuss Ethereum smart contract security vulnerabilities,
detection tools, real life attacks and preventive mechanisms. Comparisons are drawn among the Ethereum
smart contract analysis tools by considering various features. From the extensive depth review, various
issues associated with the Ethereum blockchain-based smart contract are highlighted. Finally, various future
directions are also discussed in the field of the Ethereum blockchain-based smart contract that can help the
researchers to set the directions for future research in this domain.

INDEX TERMS Blockchain, smart contract, decentralized, ethereum, vulnerabilities, security analysis tool.

I. INTRODUCTION
Blockchain technology can be defined as an immutable,
shared distributed ledger, spread over thousands of computer
systems. Blockchain technology [1] gained implausible atten-
tion after the publication of Satoshi Nakamoto’s [2] white
paper in 2008. In the white paper, Satoshi gave the solution
to the double-spending problem for digital currency in a
decentralized P2P [3] network. Dubai appointed a minister
in charge of Artificial Intelligence with a vision of becoming
the world’s first blockchain-powered government [4].

Saudi Arabia, one of theMiddle Eastern countries, recently
announced to use blockchain technology [5] for credit-
ing a part of the liquidity to be injected into the banking
sector. Distributed consensus building is replacing the role

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Imran Tariq .

of a trusted third party in decentralized P2P networks [6].
Ethereum is a most generally used Turing Complete [5]
blockchain platform, which allows developers to write a
smart contract with their own random rules for ownership,
transaction format, and state transition functions. Anyone can
run an Ethereum node [6], [7] on their machine to participate
in the Ethereum blockchain network. Figure 1 describes the
layered architecture of the Ethereum blockchain [8].

Blockchain is a chain of immutable [9] blocks and this fea-
ture is increasing its popularity worldwide. Figure 2 explains
the structure of an Ethereum blockchain node. Each node in
the chain is linked to the other using the hash of the previous
node. Transactions are hashed in the form of a Merkle tree,
which is an important part of the blockchain. It is used for
efficient and secure verification of consistency and integrity
of large sets of transactional data. The use of Merkle trees in
blockchain was introduced by W. Scott Stornetta and Stuart

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 6605

https://orcid.org/0000-0002-4292-5066
https://orcid.org/0000-0001-9127-5947
https://orcid.org/0000-0001-6475-4491
https://orcid.org/0000-0001-8804-9172
https://orcid.org/0000-0001-8528-5778
https://orcid.org/0000-0003-2787-8334

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

FIGURE 1. Layered structure of Ethereum blockchain.

FIGURE 2. Structure of an Ethereum blockchain node.

Haber in 1993 [10], but this data structure had already been
patented by Ralph Merkle in 1979 [11].

A. MOTIVATION
The motivation for this survey is to serve developers, stu-
dents, and researchers in the field of Ethereum smart contract
security vulnerabilities. The existing surveys did not provide
a systematic understanding of Ethereum security issues and
their root causes. So, there is a strong requirement for a
concise source of systematized information and best practices
for understanding Ethereum smart contract security vulner-
abilities, their root causes, sub-causes, detection tools, and
preventive mechanism.

B. CONTRIBUTIONS
We perform a systematic survey of Ethereum smart con-
tract security vulnerabilities, detection tools, real-life attacks,
and preventive mechanisms over the period 2016 to 2021.
Our work contributes to a detailed understanding of the
Ethereum blockchain smart contract vulnerabilities with real-
life attacks/examples. Our key contributions are as follows:

1) Ethereum smart contract vulnerabilities are categorized
into three main root causes and seventeen sub-causes
categories.

2) A deep insight into twenty-four Ethereum smart con-
tract vulnerabilities with their preventive methods,
detection, and analysis tools is provided under three
root causes and seventeen sub-causes.

3) A brief comparison of detection and analysis tools for
these vulnerabilities based on five parameters such as
type of tool, input to the tool, type of analysis, imple-
mentation language, and availability of the tool to use
is provided. This survey cannot be considered complete
since Ethereum blockchain smart contract technology
is constantly expanding at a very fast speed.

C. RELATED WORK
Recently, many researchers have published review papers
in this field with different point of view. Li et al. [127] sur-
veyed 20 types of vulnerabilities with attacks and defense
mechanisms, without marking a difference in the type
of blockchains like Bitcoin or Ethereum. Zhu et al. [128]
reviewed 11 security vulnerabilities with attacks and defenses
but their survey was limited to the bitcoin blockchain
platform only. Saad et al. [129] surveyed about attacks and
defenses but not about the vulnerabilities. They discussed
attacks on the blockchain and their prevention mecha-
nism. Harz et al. [130] discussed smart contract program-
ming languages and their verification tools and methods
but did not discuss more about security vulnerabilities.
Angelo et al. [54] discussed about smart contract security
analysis tools irrespective of their provenance. They dis-
cussed 27 tools for analyzing Ethereum smart contracts.
Luu et al. [10] studied security vulnerabilities but did not
discuss their detection and defense mechanisms. They pre-
sented a security analysis tool, named Oyente, which is
based on formal verification. They analyzed Ethereum smart
contracts for 4 to 5 security vulnerabilities using this tool.
Atzei et al. [48] presented some of the security vulnerabil-
ities and their related real-world attacks. They discussed
the Ethereum smart contract security vulnerabilities in the
context of common programming issues. Tang et al. [144]
reviewed Ethereum smart contract vulnerabilities detection
tools in three categories such as static analysis, dynamic
analysis, and formal analysis. They considered 15 different
security vulnerabilities and presented related detection tools.
They suggested to use machine learning methods to analyze
smart contracts. They discussed only 15 security vulnera-
bilities and missed several other important vulnerabilities.
H. Chen et al. [145] discussed Ethereum smart contract vul-
nerabilities, their defenses, and attacks in relation with
Ethereum smart contract architecture layers. They presented
a good survey by giving good insight of each vulnerability but
they did not cover the detection tool. T. Durieux et al. [145]
discussed evaluation of 9 automated analysis tools on 47587
Ethereum smart contracts. In their work they mainly discuss
about tools comparison only.

The above-mentioned surveys did not cover all Ethereum
smart contract security vulnerabilities and also some of the
surveys missing details about detection tools and defense

6606 VOLUME 10, 2022

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

mechanisms. A survey can not be considered complete until it
covers all the problems of their area. To fill this research gap,
we present 24 security vulnerabilities with their detection
tools, defense mechanisms, and real-time attacks.

D. PAPER OUTLINE
The remainder of this paper is structured as follows:
Section II discusses the survey methodology, Section III
reviews the key concepts, functionality, and structure of the
Ethereum blockchain smart contract. Section IV presents a
review of vulnerabilities in the Ethereum smart contract,
categorized under three main root causes named Solidity
programming language, EVM, and Ethereum blockchain
design.These are further categorized into 17 sub-causes. This
section briefly describes vulnerabilities with their preven-
tive methods and detection tools against some well-known
attacks. Section V gives a summary of Ethereum smart con-
tract analysis tools to analyze the vulnerabilities based on the
type of tools, input to the tool, type of analysis, implementa-
tion language, and availability of the tool to use. Section VI
describes challenges and outlines future directions. Finally,
Section VII concludes this survey by presenting a summary
of the contributions.

II. SURVEY METHODOLOGY
In this section, various research questions and selection crite-
ria of related articles are presented.

A. RESEARCH QUESTIONS
Several blockchain smart contract development plat-
forms are available with different-different characteris-
tics, opportunities, and challenges. Developers can select
blockchain platforms as per their convenience from
Ethereum [3], Hyperledger [12], Cardano, EOS [13],
TRON [14], Steller, NEO, Waves, Tezos [15], NEM, etc.
Ethereum is the most used prominent blockchain platform,
so in this paper, we surveyed the vulnerabilities present in
the Ethereum smart contract. The literature deficiencies are
a definite and organized review of the current Ethereum
blockchain smart contract vulnerabilities. It was the main rea-
son for conducting this research. Systematic studymethods of
Kitchenham et al. [16] and Peterson et al. [17] are followed
to define the following research questions:

• RQ1: What are the existing vulnerabilities in Ethereum
Smart Contracts?

• RQ2: What are the main root causes of vulnerabilities in
Ethereum Smart Contracts?

• RQ3: What are the sub-causes of vulnerabilities in
Ethereum Smart Contracts?

• RQ4: What are the detection tools of vulnerabilities in
Ethereum Smart Contracts?

B. PROCESS ADOPTED FOR THE SELECTION OF RELATED
ARTICLES
To address these questions, 454 research articles are identi-
fied from peer-reviewed scientific research databases. Out of

these, 335 articles are excluded and 119 articles are included
for the final survey based on the exclusion and inclusion
criteria mentioned in Table 1.

TABLE 1. Literature articles inclusion/exclusion criteria.

We applied keyword searching to find Ethereum smart
contract security vulnerability-related articles for our initial
search. We performed this search in five peer-reviewed scien-
tific databases like Elsevier ScienceDirect, IEEEXplore Dig-
ital Library, Springer Online Library, ACM Digital Library,
and Google Scholar. Our main focus is on Ethereum smart
contracts, so we selected articles containing Ethereum in
their abstracts. Literature articles identification, exclusion,
eligibility, and inclusion methodology are shown in Figure 3.

We selected articles from conference proceedings, jour-
nal articles, repositories, and others like book chapters, etc.
Selected articles bifurcation is shown in Figure 4 as per year
of publication and scientific database.

III. ETHEREUM BLOCKCHAIN SMART CONTRACT
Smart Contract [18] is one of the use cases of blockchain
technology. It was introduced by Nick Szabo [19] in 1997.
It is a small piece of self-executable [20] program code. It is
deployed on the blockchain and used for auto enforcement of
terms and conditions between two untrusted parties. Consen-
sus protocols [5], [21] are used for the precise implementation
of smart contracts, otherwise, the effect of the same will be
nullified. Figure 5 elaborates the structure of the Ethereum
Smart Contract [12], [24].

Ethereum smart contracts’ main components are func-
tions, events, and state variables written in solidity [3].
Solidity programming language’s Turing completeness [5]
makes it perfect for writing a smart contract. After compi-
lation, the smart contract code is converted into EVM byte
code [23], [24] and stored on Ethereum blockchain by a con-
tract creation transaction. After a successful contract creation
transaction, the smart contract is recognized by a unique
contract address.

An Ethereum Smart Contract account consists of [25]
its executable code, contract address, a state consisting of
private storage, and balance in terms of virtual coins (Ether).
A smart contract can be invoked using a contract invoking
transactions to its inimitable address, with some parame-
ters like invocation data and payment in terms of ether as

VOLUME 10, 2022 6607

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

FIGURE 3. Literature articles identification, exclusion, eligibility, and inclusion methodology.

FIGURE 4. Selected research articles bifurcation according to the year of
publication and scientific database.

transaction fees (Gas) [26]. Ethereum Virtual Machine or
EVM [27] is a Turing complete stack-based virtual machine.
It provides a run-time environment that is isolated from the
network to execute the smart contract code. Computation
in EVM [28] is essentially bounded by transaction fees.
Smart contracts contain ethers (a type of cryptocurrency)
as their balance. Ethers can be sent to other contracts for
executing the smart contract. It is a very crucial task because
any type of vulnerability can be the reason for the loss of
millions of Ether [28]. A smart contract cannot be changed
after the deployment [29] on the blockchain due to the
immutable [30] nature of the blockchain. Therefore, security
vulnerabilities and best practices should be considered by
the smart contract developers during the coding of smart
contracts.

FIGURE 5. Structure of Ethereum smart contract.

IV. ETHEREUM SMART CONTRACT VULNERABILITIES
AND PREVENTIVE METHODS
In this section, we have reviewed Ethereum Smart Con-
tract vulnerabilities [9], [31]–[45], [122], [123], [131], [132],
[138]–[142] with some well-known attacks/example [32],
[46]–[49], detection tools [30], [37], [50]–[58], [125],
[133]–[137], [143], and their suggested preventive meth-
ods [30], [47], [59]–[63], [124], [126]. Researchers classi-
fied these vulnerabilities based on different criteria such as

6608 VOLUME 10, 2022

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

seriousness, root cause, flaws in solidity, security flaws, pri-
vacy flaws, performance flaws, flaws in EVM [27] byte code,
and blockchain [64] characteristics. We have divided these
vulnerabilities under the following three main root causes:

• Root Cause 1: Solidity Programming Language (SPL)
• Root Cause 2: Features of Ethereum Virtual Machine
(EVM)

• Root Cause 3: Design features of Ethereum Blockchain
(EBD)

FIGURE 6. Root cause and sub-cause categorization of Ethereum smart
contract vulnerabilities.

We further categorize these vulnerabilities in sub-cause
categories, which are highlighted in Figure 6.

For ease of use and proper understanding, Figure 7 explains
the nomenclature used to denote the vulnerabilities. Vulner-
abilities in each root cause category are numbered from 1 to
N (N is the total number of vulnerabilities in that category),
for example, SPL - V1 is the first vulnerability in Root Cause
‘‘Solidity programming language’’ and so on.

FIGURE 7. Nomenclature to denote vulnerabilities.

Figure 8 elaborates the Ethereum smart contract vulner-
abilities, numbered starting from 1 to the total number of
vulnerabilities in the respective root cause category.

FIGURE 8. Classification of Ethereum smart contract vulnerabilities and
their root causes.

In the following section, we present each vulnerability
in detail according to its root cause, sub-cause, detection
tool, and its prevention mechanism. Tables 2 to 24 highlights
summarized details like sub-cause, attacks, detection tools
related to each vulnerability as mentioned in Figure 8.
SPL -V1 (Denial of Service With Block Gas Limit) [26]:

Each block in the Ethereum smart contract has an upper limit
on the amount of gas (10,000,000 gas [67]) that can be spent
for computation. Thus, if the gas spent on any transaction
exceeds this block gas limit, then this leads to denial of
service and the transaction will fail. This is the case with the
unknown size of arrays which grow over time.
Preventive Method: Rather than modifying these arrays

completely at once in a single block, several blocks should
be taken. Because taking several blocks will break a single
transaction into multiple transactions, hence it reduces the
gas required for each transaction. This will reduce the risk
of exceeding the block gas limit, and hence prevent denial of
service.
SPL -V2 (Denial of Service With Failed Call) [70]: Exter-

nal calls in a smart contract can fail accidentally (due to
programming errors) or intentionally (by an attacker). In a
situation when an attacker combines several calls in a single
transaction and executes in a loop, then this can prevent other
smart contracts nodes to interact with it. This scenario is
shown in the Figure 9 solidity code.
Preventive Method: The contract logic to handle failed

calls should be executed in such a way that several calls of

VOLUME 10, 2022 6609

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

TABLE 2. SPL-V1 Sub-cause, attack, and detection tools.

TABLE 3. SPL-V2 Sub-cause, attack, and detection tools.

FIGURE 9. Denial of service for failed call.

Ether transfer must not be combined in a single transaction
with the assumption that the external calls will always fail
to choose ‘pull’ over ‘push’ for external calls. It should
implement contract logic to handle failed calls.
SPL-V3 (Randomness Using ‘Block Hash’) [9], [46]:

Sometimes randomness is required in operations and block
hash can be used for this purpose. However, it can be manip-
ulated like timestamp because the same can be predictable by
the miners. The use of ‘block hash’ as a source of randomness
is shown in Figure 10 solidity code.

TABLE 4. SPL-V3 Sub-cause, attack, and detection tools.

FIGURE 10. ‘Block hash’ as a source of randomness.

Preventive Method: The block hash can be read by any
other transaction within the same mined block. If the attacker
is also a miner, then it can be manipulated and worse can
happen. Therefore, the external sources of randomness should
be used, for example, Oracle, RNG [61], RANDAO, etc.
SPL -V4 (‘tx.origin’ Usage) [9]: This global variable of

solidity returns the address of the transaction initiator, which
in turn attracts the adversaries to imitate the initiator that
makes the contract vulnerable. The victims of this attack are
wallet-type smart contracts.

TABLE 5. SPL-V4 Sub-cause, attack, and detection tools.

PreventiveMethod: For security reasons, the origin address
should not be passed as a parameter, because an attacker can
easily figure out the right address to perform spoofing. There-
fore, it is suggested to use ‘msg.sender’ in place of ‘tx.origin’
to check the authorization of ownership, because tx.origin is
the original sender of the transaction but msg.sender is the
immediate sender. One more point to consider is to not use
address.call.value(amount)(); instead, use address.transfer().
Because address.transfer throws an exception in case of fail-
ure and stipend requirement for executing address. The trans-
fer is 2300 ether, which means assaulting contracts would not
have enough gas for additional calculation.
SPL -V5 (Integer Overflow/Underflow) [47], [72]: This

kind of situation will occur when the value in a calcula-
tion exceeds the lower or upper range of the variable size
type, so cannot be expressed by that type. This can be
the case with smaller data types. If the balance will be at
the upper limit uint value (2256), then it will reset again
to zero. An unknown hacker drained off 2000 ether (cryp-
tocurrency coin of the Ethereum blockchain) which was
worth $2.3 million using this vulnerability from ‘‘Proof of
Weak Hands Coin’’ (PoWHC), which was a legit Ponzi [70]
scheme smart contract.

TABLE 6. SPL-V5 Sub-cause, attack, and detection tools.

Preventive Method: To tackle integer overflow and under-
flow issues, arithmetic operations should be implemented
very carefully by comparing the operators and operands
before the operation. It is suggested to use assert(), require()
functions, and ‘SafeMath.sol’ [38] library for arithmetic
functions.
SPL-V6 (Re-Entrancy) [74], [76], [77]: It is also known

as a recursive call attack. In re-entrance vulnerability, a mali-
cious contract calls back into the calling contract before
the first invocation of the function is finished. Therefore,

6610 VOLUME 10, 2022

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

due to this recursive nature of the call, the malicious user
can do multiple repetitive withdrawals without affecting his
balance. An attacker stole 60 million US dollars by uti-
lizing this vulnerability in the Decentralized Autonomous
Organizations (DAO).

TABLE 7. SPL-V6 Sub-cause, attack, and detection tools.

Preventive Method: For protecting against re-entrancy
attacks, a reliable method can be used such as the ‘‘Check-
Effect-Interaction pattern’’. This defines the order in which
we should structure our functions to assure all internal state
changes before the next call. After resolving all state changes,
the function should be allowed to interact with other con-
tracts. To prevent cross-function re-entrance attacks, mutex
locks are suggested to use. Any contract’s state can be locked
using a mutex lock and can only be modified by the owner of
the lock. It prevents the recursive call of ‘withdraw function’
by an attacker. OpenZeppelin has its mutex implementation
called as Re-entrance guard which acts as a re-entrancy lock.
SPL -V7 (Mishandled Exception) [79]:When a contract is

called by another contract and an exception or error is raised
in the Calle contract. But if the same might not be reported
to the Calle contract, then it might lead to threats. Therefore,
it can attract the attackers to execute the malicious code in the
contract.

TABLE 8. SPL-V7 Sub-cause, attack, and detection tools.

Preventive Method:An exception in the callee may or may
not be propagated to the caller depending on how the function
was called. Exception handling operators should be used to
avoid such types of situations. The return value of functions
must always be checked and an exception should be thrown.
SPL -V8 (Gasless ‘Send’) [26]: Gas is required in

Ethereum smart contract as an execution fee. When ethers
are transferred to a smart contract via send and if the fallback
function in the Calle contract has the maximum gas limit [80]
of twenty-three hundred units, then an out-of-gas exception
can be thrown. If this exception is not handled properly, then
malicious users can take benefit from this vulnerability by
keeping non-transferred ethers wrongfully even though it was
assumed to give them away. This scenario can be understood
in Figure 11. If the pay function of contract A is called with
the address of contract B. Then contract A is supposed to send
’X’ wei (the smallest denomination of ether) to contract B.
If the fallback function of contract B revert due to insufficient
gas and the contract behaves maliciously then it will keep
those ’X’ wei to itself.

TABLE 9. SPL-V8 Sub-cause, attack, and detection tools.

FIGURE 11. An Example of Gasless ’send’.

Preventive Method: Gas consumption limits change regu-
larly because of the change in the transaction fees. Therefore,
an exception should be thrown properly if failure happens
due to gas consumption. The fallback functions should be
designed in such a way that they do not require too much gas
for execution or are less expensive to execute. It will mitigate
the purpose of failing and the cost of executing the contract.
SPL -V9 (Gas Costly Pattern) [79], [83]: Every instruction

in Ethereum smart contract requires gas (Ethers) as execu-
tion fee. Under-optimized [40] smart contracts can contain
unnecessary and irrelevant code or expensive patterns, which
can cost a lot of execution fees. Chen et al. [42] identified
seven programming patterns and developed a tool ‘GASPER’
to determine such types of patterns.

TABLE 10. SPL-V9 Sub-cause, attack, and detection tools.

Preventive Method: Chen et. al [42] developed a tool
named ‘GASPER’, which performs the following operations
to detect gas costly patterns:

• Do a depth-first search and detect the dead code by
scanning the control flow graph.

• Detects the opaque predicates by executing the smart
contract symbolically.

• Detects expensive loop operations like SLOAD,
SSTORE, and BALANCE.

These types of gas costly patterns should be identified and
should be replaced by gas efficient patterns for optimizing the
execution cost.
SPL -V10 (Call to the Unknown) [54]: The cause of this

vulnerability is the execution of the fallback function under

VOLUME 10, 2022 6611

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

certain conditions. The function with the given signature does
not exist. This can happen due to the invocation of certain
functions of Calle’s contract or the transfer of ether to another
smart contract.

TABLE 11. SPL-V10 Sub-cause, attack, and detection tools.

Preventive Method: Call to unknown contracts can be very
risky, so the following points should be considered:

• Be vigilant while making external calls
• External calls to unknown addresses should be per-
formed as the last operation in a localized function or
piece of code execution.

• Unknown contracts should be marked unsafe
• Use checks effect interaction pattern to avoid state
changes after an external call

SPL -V11 (Hash Collision With Multiple Variable-Length
Arguments): ‘abi.encodePacked()’ is a nonstandard packed
mode that is mainly used for indexed packed parameters.
‘abi.encodePacked()’ can lead to a hash collision in some
specific situations due to multiple variable-sized parameters.
‘abi.encodePacked()’ packs elements in order regardless of
their original order in the array, which can be exploited by
the attacker in signature verification by changing the position
of the elements.

TABLE 12. Sol-V11 Sub-cause, attack, and detection tools.

Preventive Method: The following points should be con-
sidered to prevent this vulnerability:

• Rather than passing arrays as parameters, pass a single
value.

• Array’s positions aremodifiable, so allow arrays of fixed
length only.

• Use abi.encode() instead of abi.encodePacked()
SPL -V12 (Insufficient Gas Griefing) [9]: Smart contracts

that accept data from external sources and use the same in
a subcall to another contract, are vulnerable to insufficient
gas griefing attacks. Because in case of subcall failure [85],
the whole transaction can be reverted. The attacker can effec-
tively censor transactions by using just enough gas [86] to
execute the transaction, but not enough for the sub-call to
succeed. This scenario is shown in Figure 12 solidity code.

TABLE 13. SPL-V12 Sub-cause, attack, and detection tools.

Preventive Method: To prevent this vulnerability, trusted
users should be allowed to relay transactions. A type of logic
should be applied to check whether a sufficient amount of gas
is provided or not. Relayers can be encouraged by a reward
to give the right amount of gas for a successful transaction.

FIGURE 12. Insufficient gas griefing.

SPL -V13 (Unprotected Ether Withdrawal): Ether can be
withdrawn by attackers due to missing or inadequate access
control. Improper naming of functions intended to be a con-
structor and constructor code can be accessed by malicious
users to reinitialize the contract.

TABLE 14. SPL-V13 Sub-cause, attack, and detection tools.

PreventiveMethod:Access control should be implemented
in such a way that only authorized users can access the
same. The function’s naming should be done very carefully
so that the function’s name should not be intended to be
a constructor. Because the constructor code, which will be
ended up in the run time, byte code can be called by anyone
to initialize the contract again.
SPL-V14 (Floating Pragma) [91]: Different compiler ver-

sions can be used to compile the solidity smart contract. But
compilation with an outdated compiler might introduce a
bug and can affect the smart contract system. At the time of
deployment, the compiler version of the smart contract should
be the same as that testing time.

TABLE 15. SPL-V14 Sub-cause, attack, and detection tools.

Preventive Method: Smart contracts can be compiled using
different compiler versions. But if an older version of the
solidity compiler is used to compile the smart contract, leads

6612 VOLUME 10, 2022

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

to errors in the form of bugs. A smart contract must be com-
piled on the same solidity compiler on which it has already
been tested during the creation phase. Before deployment
on the blockchain, the compiler version mentioned in the
solid source code of the smart contract must be ensured
for similarity and as a preventive technique Pragma version
should be locked before deployment
SPL -V15 (Function’s Default Visibility) [9], [46]: In

solidity, visibility specifiers are used to make functions exter-
nal, public, internal, or private. Incorrect use of these visibil-
ity specifiers can make smart contracts vulnerable and attract
attackers.

TABLE 16. SPL-V15 Sub-cause, attack, and detection tools.

Preventive Method: It is an acceptable practice to consis-
tently determine the visibility of all functions in a contract,
regardless of whether they are intentionally public. Recent
versions of Solidity presently show warnings during the com-
pilation of functions that have no explicit visibility set, to help
empower this training. So as a preventive method, special
attention is required while using them.
SPL-V16 (Delegate Call) [92]: For calling another con-

tract’s function, the target function’s ABI (Application Binary
Interface - the standard way of interaction with smart con-
tracts in the Ethereum blockchain environment) is required.
If ABI is known then the target function’s signature can
be used directly for calling purposes. But what if we
don’t know the target function’s ABI, then we can use
the ‘‘DELEGATECALL’’. For example, suppose there is
contract A and contract B. The contract A delegate call
to contract B’s function. If the user calls contract A then
contract A delegate call to contract B and the function would
be executed. But in this scenario, all the state changes will be
reflected in contract A, not in contract B. The context preserv-
ing nature of ‘DELEGATECALL’ can create vulnerabilities
when it runs in the context of other applications. It can lead
to unexpected execution such as self-destruction and balance
loss of contracts.

TABLE 17. SPL-V16 Sub-cause, attack, and detection tools.

Preventive Method: ‘‘Library’’ keyword is provided in the
solidity programming language to execute library contracts.
This guarantees that the library contract is stateless and
non-self-destructible. Stateless libraries help in mitigating
several issues related to storage context. Stateless libraries
additionally forestall assaults whereby aggressors change the
condition of the library straightforwardly to influence the

contracts that rely upon the library’s code. So as a preven-
tive method, more attention must be paid while utilizing
‘‘DELEGATECALL’’ especially in the calling context of
calling contract and library contract. For ensuring the safety
of storage context, Delegate calls must be used to call trusted
contracts only.
SPL-V17 Unprotected ‘Self-Destruct’: This vulnerability

is named because of the self-destruct opcode. Before deleting
the contract permanently, this opcode can transfer the ethers
of the contract to a predefined contract. If the access control is
not given properly, the malicious user can destroy the contract
to snip all ethers of the contract.

TABLE 18. SPL-V17 Sub-cause, attack, and detection tools.

Preventive Method: This vulnerability regularly emerges
from the misuse of ’this.balance’. Whenever we send ether
to any contract then called contracts fallback function is
called. But the fallback function is not called if the ether
transfer is initiated using ‘‘selfdestruct()’’ function call. Self-
destruct functionality should be removed from the smart
contract unless it is compulsorily required. And if there is
a need to use the functionality of ‘‘selfdestruct()’’ then it
must be used in the multi-signature scheme environment.
Because in multi-signature environment, the execution of
‘‘selfdestruct()’’ must be approved by multiple parties.
EVM-V1 (Immutable Bugs or Mistakes) [9], [46]: It is

related to the immutability of the Ethereum blockchain.
Because once a contract is deployed on the blockchain, it can-
not be altered due to the immutability feature of blockchain.
It is against the legal law that allows being modified and
terminated. However, it may lead to problems if the deployed
smart contract contains bugs because after deployment it is
impossible to alter.

TABLE 19. EVM-V1 Sub-cause, attack, and detection tools.

Preventive Method: Immutability of Ethereum smart con-
tracts creates several issues. Marino et al. [94] tackled this
vulnerability by presenting a set of standards taken from legal
contracts and redefined to be fit in the context of Ethereum
smart contracts. This set of standards enable Ethereum smart
contracts to be changed or terminated whenever required as
per the need. Marino et al. demonstrated their success by
applying this set of standards in the scenario of the Ethereum
smart contract.
EVM-V2 (Ether Lost in Transfer) [31]: Ethers can be

transferred to a contract to its unique address, but the contract
must not be orphan, because in that case the transferred ether

VOLUME 10, 2022 6613

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

will be lost forever. There is a mechanism to revert the ether
transfer.

TABLE 20. EVM-V2 Sub-cause, attack, and detection tools.

Preventive Method: Since the lost ether cannot be recu-
perated, developers need to physically guarantee the rightness
of the recipient addresses. The address of the recipient con-
tract must be verified manually to avoid the loss of ether in
the transfer.
EBD-V1 (Timestamp Dependency) [9]: It is classified as a

security vulnerability by Maher and Alharby [96]. It leads to
a vulnerable situation when the triggered condition to execute
the transaction is the block timestamp, because the dishonest
miners can utilize the block timestamp value in an unethical
way.

TABLE 21. EBD-V1 Sub-cause, attack, and detection tools.

Preventive Method: Luu et al. [8] suggested to use block
number instead of block timestamp. Because the block num-
ber cannot be altered by the malicious miner. Therefore, it is
suggested not to assign a block timestamp to a variable in the
smart contract code.
EBD-V2 (Lack of Transactional Privacy) [96], [97]:

Transactions balance details of the users are publicly avail-
able. But, users want that their financial details and transac-
tions should not be visible to others. It may limit the users of
smart contracts since attackers can monitor the transaction-
related details of users. Attackers can use this information for
various kinds of unethical uses.

TABLE 22. EBD-V2 Sub-cause, attack, and detection tools.

Preventive Method: Watanabe et al. [21] suggested the
encryption of the smart contracts before deploying them on
the blockchain. Kosba et al. [97] developed a tool to create a
privacy-preserving contract. They included the important fea-
tures of privacy protection not only in Ethereum blockchain-
based smart contract applications but also for all types of
blockchains. As a preventive method to this issue, they imple-
mented a decentralized smart contract framework, Hawk,
which does not store financial transactions in the blockchain
and spares the developers from implementing any crypto-
graphic function.

EBD-V3 (Transaction Ordering Dependency) [54]: This
vulnerability is related to the execution order of two depen-
dant transactions that are invoking the same smart contract.
A malevolent user can utilize this vulnerability to attack if the
transactions are not executed in the proper order. The order
of transaction execution is decided by the miners, but if the
adversary is the miner itself, then this will be a very disastrous
situation.
Preventive Method: Natoli et al. [100] used Ethereum-

based functions (e.g., SendIfReceived) to enforce the order of
transactions. Luu et al. [10] recommended a guard condition
such that ‘‘a contract code either returns the expected output
or fails’’. To defend against Transaction Ordering Depen-
dancy attacks, ShuaiWang et al. [56] suggested a pre-commit
scheme

TABLE 23. EBD-V3 Sub-cause, attack, and detection tools.

TABLE 24. EBD-V4 Sub-cause, attack, and detection tools.

EBD-V4 (Untrustworthy Data Feeds) [99]: Some smart
contracts need data feeds from outside the blockchain, but
there is no guarantee that the external data source is trustwor-
thy. So, in the case when an attacker is intentionally sending
wrong information to fail the smart contract operation then it
will be a hazardous situation.
Preventive Method Zhang et al. [99] developed a tool

named Town Crier (TC). TC works as a trustworthy more
mediate in between the external source and a smart contract.
In other words, it acts as an authenticator and provides data
feed privacy using encryption. Town Crier tool comprises
a Town Crier smart contract that dwells on the blockchain,
and a Town Crier worker which lives exterior the blockchain.
The data feed request can be sent to the Town Crier contract
by the client contract, which finally will send to the Town
Crier worker. The Town Crier worker at that point speaks to
outside information sources using HTTPS to get the informa-
tion. After getting the necessary information, the worker will
advance those feed requests to the Town Crier contract, which
finally will ssend to the client contract.

Figure 13 depicts the timeline discovery of famous attacks
on Ethereum blockchain-based smart contracts. The figure
depicts the attack’s sub-cause, its related vulnerability, any
financial loss, and the resolution and suggestions.

V. ETHEREUM SMART CONTRACT ANALYSIS TOOLS
Smart contracts need to perform as intended because
bugs may lead to terrific losses. Security analysis tool

6614 VOLUME 10, 2022

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

FIGURE 13. Discovey Timeline of Famous Attacks on Ethereum Smart Contract.

[30], [37] [53], [92] [100] are necessary to analyze the secu-
rity vulnerabilities of the smart contract because after the
deployment of the blockchain we are unable to alter the smart
contract due to the immutability feature of blockchain.

We have already described an analysis tool for each vul-
nerability in Section III. Several surveys are presented about
tools to analyze Ethereum smart contracts based on different
parameters. Table 25 highlights a summary based on follow-
ing parameters:

1) Input to the tool byte code or solidity code: Some of
the tools directly work with solidity code, but due to the
incompatibility of solidity code on different platforms,
some tools use EVM byte code [54] for analysis.

2) Type of analysis (static or dynamic): Some of the
tools analyze the code dynamically during execution,
while some analyze the code without executing the
code.

3) Type of tool (academic or company): Some of the
tools are designed for academic purposes. Some of
them are developed by private companies while some
of the tools like Remix and Oyente are community
tools. We have mentioned the respective company
name if the tool is company-made.

4) Implementation language: The majority of the tools
are implemented in Python. Some of them in JAVA,
C++, etc.

5) Public Availability of the tool: Not all tools are pub-
licly available. Some of them are private that developed
by companies. Some of them are not released by the
developers, only the methodology is shown in their
research papers.

VI. DISCUSSION
In this systematic review, we have discussed Ethereum
smart contract security vulnerabilities, detection tools, real-
life attacks, and preventive mechanisms. For this purpose,
we have referred 119 research articles and some online
resources over the period 2016 to 2021. The comparison
among the related works are then presented to evaluate

various shortcomings with the existing techniques. Finally,
various future directions are also discussed in the field of the
Ethereum blockchain-based smart contract that can help the
researchers to set the directions for future research in this
domain.

A. COMPARISON WITH RELATED WORK
This paper is an extension of the existing surveys [10], [48],
[54], [127]–[130], [144]–[146] on the Ethereum smart con-
tract security vulnerabilities, well-known attacks, detection
tools, and their suggested preventive methods. This work
encompasses more detailed and systematic aspects for filling
the research gaps related to systematic information source for
Ethereum smart contract security vulnerabilities. We catego-
rized the security vulnerabilities into three main root cause
and seventeen sub-causes. This paper presents a deep insight
into each vulnerability as well as its detection tools, real life
attacks and prevention mechanisms. Table 26 highlights the
comparisons between the present surveywith the existing sur-
veys on Ethereum smart contract vulnerabilities. It is found
that the present survey covers more features as compared to
the existing survey articles. Additionally, we have consid-
ered more recent literature to highlight the future research
directions.

B. LIMITATIONS
Mostly our discussion is related to Ethereum blockchain-
based smart contract security vulnerabilities. As research on
the Ethereum blockchain contributes most of the research
literature but other blockchain platforms like Solana, EOS,
and Hyperledger Fabric, etc. are also having important con-
cerns. We have not discussed security vulnerabilities related
to blockchain platforms other than Ethereum. We leave the
same for future work.

C. ETHEREUM BLOCKCHAIN DESIGN CHALLENGES
Blockchain is having an image problem because it is mostly
connected with cryptocurrency and assumed as a world of
frauds and attackers. Smart contract technology is growing

VOLUME 10, 2022 6615

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

TABLE 25. Summary of Ethereum smart contract analysis tools.

TABLE 26. Comparison between the existing and present survey articles
on Ethereum smart contract vulnerabilities.

at a very fast speed. Ethereum blockchain design and EVM
features pose several security challenges [38], [117]–[121].
However, the following are some of the security challenges
due to Ethereum’s blockchain design.

1) Verifier’s nobility: In the transaction verification pro-
cess, if the majority of verifiers are dishonest, then
invalid transactions can be approved and added to the
chain of the block.

2) Selfish mining: Miner’s honesty plays an important
role in the mining process. An ill-intended miner can
work as an adversary and affect the honest mining
process.

3) Immutability: It does not allow editing a buggy smart
contract after deployment on the blockchain. There
should be some mechanism to alter the buggy or faulty
smart contracts.

4) Transaction processing time: Transaction processing
time in the Ethereum blockchain makes smart contract
execution very slow, which affects the efficiency.

5) Lack of standards: Limited number of standards
related to smart contracts increases the difficulty in the
maintenance process of smart contracts.

6) Lack of Concurrency: Concurrency is not supported
by Ethereum. Thus, to ensure security in the blockchain
construction process, each blockchain node has to store
Ethereum’s current state and the whole transaction his-
tory. By this process, fifteen transactions per second
are supported by Ethereum, which leads to serious
scalability problems.

D. EVM FEATURES CHALLENGES
EVM, that is, Ethereum Virtual Machine, provides a virtual
environment for the smart contract execution.

1) EVM stack size: Maximum stack size in EVM is up
to 1024 items with 256 bits for each. It increases the
chances of vulnerability. The restricted stack size can
without much of a stretch, lead to weaknesses and
increase the trouble of creating complex applications.

2) Gas consumption Limit: As the number of users
increases in large-scale projects, the number of transac-
tions will also increase accordingly. This will increase
the gas consumption of the contract. Because the gas
limit cannot be changed, then there are more chances
of ‘‘out-of–of-gas error’’.

Above mentioned open issues should be investigated to
develop safe smart contracts.

6616 VOLUME 10, 2022

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

E. FUTURE RESEARCH DIRECTIONS
In the future, more features and functionalities will be added
in Ethereum blockchain smart contracts that may lead tomore
security flaws. Therefore, the present vulnerability detection
tools should be enhanced and new detection tools should be
developed for the detection and mitigation of new security
flaws. Further work could be led to finding the unknown
vulnerabilities and how we can forestall them. For example,
have a self-protection (revocable) mechanism for the smart
contract to consequently play it safe if an attack happens. This
is essential because, after the deployment on the blockchain,
the smart contract is immutable. As the size of Ethereum
projects increases over time, then it will pose scalability
and new security issues. Thus, these challenges should be
considered in the near future on the smart contract.

VII. CONCLUSION
We have presented a systematic review of the Ethereum
smart contract security vulnerabilities including well-known
security attacks with their preventive methods. We discussed
the vulnerabilities according to their root cause, sub causes.
We systematically presented the well-known attacks and
their detection and analysis tools. Ethereum smart contract
analysis tools are highlighted based on five parameters such
as type of tool, input to the tool, type of analysis, imple-
mentation language, and availability of the tool to use. It has
been found that due to the security flaws in Ethereum smart
contracts, it is vulnerable to attack from adversaries. Smart
contract deals in digital assets, so a single error or security
flaw can cause a loss in millions. Therefore, the smart con-
tract developers must consider such vulnerabilities and use
best practices and principles while creating safe smart con-
tracts.We have also provided insights into security challenges
and future research directions for developing more robust
advanced and robust vulnerabilities detection tools.

REFERENCES
[1] A. Averin and O. Averina, ‘‘Review of blockchain technology vul-

nerabilities and blockchain-system attacks,’’ in Proc. Int. Multi-Conf.
Ind. Eng. Mod. Technol., Oct. 2019, pp. 1–6, doi: 10.1109/FarEast-
Con.2019.8934243.

[2] C. S. Wright, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ SSRN
Electron. J., pp. 1–9, Jan. 2019, doi: 10.2139/ssrn.3440802.

[3] C. K. Frantz and M. Nowostawski, ‘‘From institutions to code: Towards
automated generation of smart contracts,’’ in Proc. IEEE 1st Int. Work-
shops Found. Appl. Self Syst., Sep. 2016, pp. 210–215.

[4] M. In and F. Of, ‘‘Dubai aims to be a city built on blockchain where
financial regulation goes in a republican era,’’Wall Str. J., vol. 4, pp. 3–6,
Apr. 2017. [Online]. Available: https://www.wsj.com/articles/dubai-
aims-to-be-a-city-built-on-blockchain-1493086080

[5] S. Kim andG. C.Deka,Advanced Applications of Blockchain Technology,
vol. 60. Singapore: Springer, 2020.

[6] M. Singh and S. Kim, ‘‘Blockchain technology for decentralized
autonomous organizations,’’ in Proc. Adv. Comput., vol. 115, Oct. 2019,
pp. 115–140.

[7] C. E. Brown, O. Kuncar, and J. Urban, ‘‘Formal verification of smart
contracts,’’ in Proc. ACM Workshop Program. Lang. Anal. Secur., 2017,
pp. 91–96. [Online]. Available: http://proofmarket.org

[8] M. Bartoletti and L. Pompianu, ‘‘An empirical analysis of smart contracts:
Platforms, applications, and design patterns,’’ in Financial Cryptography
and Data Security (Lecture Notes in Computer Science), vol. 10323.
Cham, Switzerland: Springer, 2017, pp. 494–509, doi: 10.1007/978-3-
319-70278-0_31.

[9] M. Wöhrer and U. Zdun, ‘‘Design patterns for smart contracts
in the ethereum ecosystem,’’ in Proc. IEEE Int. Conf. Internet
Things, Aug. 2018, pp. 1513–1520, doi: 10.1109/Cybermat-
ics_2018.2018.00255.

[10] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making
smart contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun.
Secur., Oct. 2016, pp. 254–269, doi: 10.1145/2976749.2978309.

[11] A. Mense and M. Flatscher, ‘‘Security vulnerabilities in ethereum smart
contracts,’’ in Proc. 20th Int. Conf. Inf. Integr. Appl. Services, Nov. 2018,
pp. 375–380, doi: 10.1145/3282373.3282419.

[12] D. Bayer, S. Haber, and W. S. Stornetta, ‘‘Improving the efficiency
and reliability of digital time-stamping,’’ in Proc. Sequence, 1993,
pp. 329–334, doi: 10.1007/978-1-4613-9323-8_24.

[13] R. Merkel, Secrecy, Authentication and Public Key Systems. Stanford,
CA, USA: Stanford Univ., 1979, p. 193.

[14] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F.-Y. Wang, ‘‘An
overview of smart contract: Architecture, applications, and future trends,’’
in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018, pp. 108–113, doi:
10.1109/IVS.2018.8500488.

[15] (2018). Eos. [Online]. Available: https://eos.io/
[16] (2017). Tron. [Online]. Available: https://tron.network/
[17] B. Canou, G. Henry, and P. Chambart, ‘‘Tezos: The ocaml crypto-ledger,’’

in Proc. OCaml Users Developers Workshop, 2017, pp. 1–2.
[18] B. A. Kitchenham, D. Budgen, and O. P. Brereton, ‘‘Using mapping

studies as the basis for further research—A participant-observer case
study,’’ Inf. Softw. Technol., vol. 53, no. 6, pp. 638–651, Jun. 2011, doi:
10.1016/j.infsof.2010.12.011.

[19] K. Petersen, R. Feldt, S.Mujtaba, andM.Mattsson, ‘‘Systematic mapping
studies in software engineering,’’ in Proc. Electron. Workshops Comput.,
Jun. 2008, pp. 1–10, doi: 10.14236/ewic/ease2008.8.

[20] C. D. Clack, V. A. Bakshi, and L. Braine, ‘‘Smart contract tem-
plates: Foundations, design landscape and research directions,’’ 2016,
arXiv:1608.00771.

[21] N. Szabo, ‘‘Formalizing and securing relationships on public networks,’’
1st Monday, vol. 2, no. 9, pp. 1–15, Oct. 1997, doi: 10.5210/fm.v2i9.548.

[22] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, ‘‘Smart con-
tract security: A software lifecycle perspective,’’ IEEE Access, vol. 7,
pp. 150184–150202, 2019, doi: 10.1109/ACCESS.2019.2946988.

[23] H. Watanabe, S. Fujimura, A. Nakadaira, Y. Miyazaki, A. Akutsu, and
J. J. Kishigami, ‘‘Blockchain contract: A complete consensus using
blockchain,’’ in Proc. IEEE 4th Global Conf. Consum. Electron. (GCCE),
Oct. 2015, pp. 577–578, doi: 10.1109/GCCE.2015.7398721.

[24] A. Pinna, S. Ibba, G. Baralla, R. Tonelli, and M. Marchesi,
‘‘A massive analysis of ethereum smart contracts empirical study
and code metrics,’’ IEEE Access, vol. 7, pp. 78194–78213, 2019, doi:
10.1109/ACCESS.2019.2921936.

[25] R. Norvill, B. B. F. Pontiveros, R. State, and A. Cullen, ‘‘Visual emu-
lation for Ethereum’s virtual machine,’’ in Proc. IEEE/IFIP Netw. Oper.
Manage. Symp., Apr. 2018, pp. 1–4, doi: 10.1109/NOMS.2018.8406332.

[26] J. Krupp and C. Rossow, ‘‘TEETHER: Gnawing at ethereum to automati-
cally exploit smart contracts,’’ in Proc. 27th USENIX Secur. Symp., 2018,
pp. 1317–1333.

[27] G. A. Oliva, A. E. Hassan, and Z. M. Jiang, ‘‘An exploratory study of
smart contracts in the ethereum blockchain platform,’’ Empirical Softw.
Eng., vol. 25, no. 3, pp. 1864–1904,May 2020, doi: 10.1007/s10664-019-
09796-5.

[28] R. Yang, T. Murray, P. Rimba, and U. Parampalli, ‘‘Empirically
analyzing ethereum’s gas mechanism,’’ in Proc. IEEE Eur. Symp.
Secur. Privacy Workshops (EuroS&PW), Jun. 2019, pp. 310–319, doi:
10.1109/EuroSPW.2019.00041.

[29] F. Ma, Y. Fu, M. Ren, M. Wang, Y. Jiang, K. Zhang, H. Li, and X. Shi,
‘‘EVM: From offline detection to online reinforcement for ethereum
virtual machine,’’ in Proc. IEEE 26th Int. Conf. Softw. Anal., Evol. Reeng.
(SANER), Feb. 2019, pp. 554–558, doi: 10.1109/SANER.2019.8668038.

[30] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, and X. Luo, ‘‘An adaptive
gas cost mechanism for ethereum to defend against under-priced DoS
attacks,’’ in Information Security Practice and Experience (Lecture Notes
in Computer Science), vol. 10701. Cham, Switzerland: Springer, 2017,
pp. 3–24, doi: 10.1007/978-3-319-72359-4_1.

[31] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, ‘‘VeriSolid:
Correct-by-design smart contracts for ethereum,’’ in Financial Cryp-
tography and Data Security (Lecture Notes in Computer Science),
vol. 11598. Cham, Switzerland: Springer, 2019, pp. 446–465, doi:
10.1007/978-3-030-32101-7_27.

VOLUME 10, 2022 6617

http://dx.doi.org/10.1109/FarEastCon.2019.8934243
http://dx.doi.org/10.1109/FarEastCon.2019.8934243
http://dx.doi.org/10.2139/ssrn.3440802
http://dx.doi.org/10.1007/978-3-319-70278-0_31
http://dx.doi.org/10.1007/978-3-319-70278-0_31
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00255
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00255
http://dx.doi.org/10.1145/2976749.2978309
http://dx.doi.org/10.1145/3282373.3282419
http://dx.doi.org/10.1007/978-1-4613-9323-8_24
http://dx.doi.org/10.1109/IVS.2018.8500488
http://dx.doi.org/10.1016/j.infsof.2010.12.011
http://dx.doi.org/10.14236/ewic/ease2008.8
http://dx.doi.org/10.5210/fm.v2i9.548
http://dx.doi.org/10.1109/ACCESS.2019.2946988
http://dx.doi.org/10.1109/GCCE.2015.7398721
http://dx.doi.org/10.1109/ACCESS.2019.2921936
http://dx.doi.org/10.1109/NOMS.2018.8406332
http://dx.doi.org/10.1007/s10664-019-09796-5
http://dx.doi.org/10.1007/s10664-019-09796-5
http://dx.doi.org/10.1109/EuroSPW.2019.00041
http://dx.doi.org/10.1109/SANER.2019.8668038
http://dx.doi.org/10.1007/978-3-319-72359-4_1
http://dx.doi.org/10.1007/978-3-030-32101-7_27

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

[32] S. Sayeed, H. Marco-Gisbert, and T. Caira, ‘‘Smart contract: Attacks
and protections,’’ IEEE Access, vol. 8, pp. 24416–24427, 2020, doi:
10.1109/ACCESS.2020.2970495.

[33] M. Demir, M. Alalfi, O. Turetken, and A. Ferworn, ‘‘Security smells
in smart contracts,’’ in Proc. IEEE 19th Int. Conf. Softw. Rel. Secur.
Companion (QRS-C), Jul. 2019, pp. 442–449, doi: 10.1109/QRS-C.2019.
00086.

[34] J. Liu and Z. Liu, ‘‘A survey on security verification of blockchain
smart contracts,’’ IEEE Access, vol. 7, pp. 77894–77904, 2019, doi:
10.1109/ACCESS.2019.2921624.

[35] W. Dingman, A. Cohen, N. Ferrara, A. Lynch, P. Jasinski, P. E. Black, and
L. Deng, ‘‘Defects and vulnerabilities in smart contracts, a classification
using the Nist bugs framework,’’ Int. J. Netw. Distrib. Comput., vol. 7,
pp. 121–132, Jun. 2019, doi: 10.2991/ijndc.k.190710.003.

[36] S. Rouhani and R. Deters, ‘‘Security, performance, and applica-
tions of smart contracts: A systematic survey,’’ IEEE Access, vol. 7,
pp. 50759–50779, 2019, doi: 10.1109/ACCESS.2019.2911031.

[37] J. Schütte, ‘‘Blockchain and smart contracts: Technologies,
research issues and applications,’’ in Proc. Fraunhofer-Gesellschaft,
vol. 4801, Jun. 2018, pp. 1–33. [Online]. Available: http://publica.
fraunhofer.de/dokumente/N-497216.html

[38] A. Singh, R. M. Parizi, Q. Zhang, K. K. R. Choo, and A. Dehghan-
tanha, ‘‘Blockchain smart contracts formalization: Approaches and chal-
lenges to address vulnerabilities,’’ Comput. Secur., vol. 88, Oct. 2020,
Art. no. 101654, doi: 10.1016/j.cose.2019.101654.

[39] P. Tantikul and S. Ngamsuriyaroj, ‘‘Exploring vulnerabilities in solidity
smart contract,’’ in Proc. 6th Int. Conf. Inf. Syst. Secur. Privacy, 2020,
pp. 317–324, doi: 10.5220/0008909803170324.

[40] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and
R. Hierons, ‘‘Smart contracts vulnerabilities: A call for blockchain soft-
ware engineering,’’ in Proc. IEEE 1st Int. Work. Blockchain Oriented
Softw. Eng., Jun. 2018, pp. 19–25, doi: 10.1109/IWBOSE.2018.8327567.

[41] J. Song, H. He, Z. Lv, C. Su, G. Xu, and W. Wang, ‘‘An efficient
vulnerability detection model for ethereum smart contracts,’’ in Network
and System Security (Lecture Notes in Computer Science), vol. 11928.
Cham, Switzerland: Springer, 2019, pp. 433–442, doi: 10.1007/978-3-
030-36938-5_26.

[42] T. Chen, X. Li, X. Luo, and X. Zhang, ‘‘Under-optimized smart
contracts devour your money,’’ in Proc. IEEE 24th Int. Conf.
Softw. Anal., Evol. Reeng. (SANER), Feb. 2017, pp. 442–446, doi:
10.1109/SANER.2017.7884650.

[43] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, ‘‘A survey
on the scalability of blockchain systems,’’ IEEE Netw., vol. 33, no. 5,
pp. 166–173, Sep. 2019, doi: 10.1109/MNET.001.1800290.

[44] A. Juels, A. Kosba, and E. Shi, ‘‘The ring of gyges: Inves-
tigating the future of criminal smart contracts,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 283–295, doi:
10.1145/2976749.2978362.

[45] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, ‘‘Blockchain chal-
lenges and opportunities: A survey,’’ Int. J. Web Grid Services, vol. 14,
no. 4, pp. 352–375, 2018, doi: 10.1504/IJWGS.2018.095647.

[46] I.-C. Lin and T.-C. Liao, ‘‘A survey of blockchain security issues and
challenges,’’ Int. J. Netw. Secur., vol. 19, no. 5, pp. 653–659, Sep. 2017,
doi: 10.6633/IJNS.201709.19(5).01.

[47] E. Mik, ‘‘Smart contracts: Terminology, technical limitations and real
world complexity,’’ Law, Innov. Technol., vol. 9, no. 2, pp. 269–300,
Jul. 2017, doi: 10.1080/17579961.2017.1378468.

[48] N. Atzei, M. Bartoletti, and T. Cimoli, ‘‘A survey of attacks on ethereum
smart contracts (SoK),’’ Principles of Security and Trust (Lecture Notes
in Computer Science), vol. 10204. Berlin, Germany: Springer, Jul. 2017,
pp. 164–186, doi: 10.1007/978-3-662-54455-6_8.

[49] G. Ayoade, E. Bauman, L. Khan, and K. Hamlen, ‘‘Smart
contract defense through bytecode rewriting,’’ in Proc. IEEE
Int. Conf. Blockchain (Blockchain), Jul. 2019, pp. 384–389, doi:
10.1109/Blockchain.2019.00059.

[50] I. Grishchenko,M.Maffei, and C. Schneidewind, ‘‘A semantic framework
for the security analysis of ethereum smart contracts,’’ in Proc. Int. Conf.
Princ. Secur. Trust, vol. 10804, 2018, pp. 243–269.

[51] W. J. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, ‘‘Towards safer smart
contracts: A sequence learning approach to detecting security threats,’’
2018, arXiv:1811.06632.

[52] J. Ye, M.Ma, T. Peng, and Y. Xue, ‘‘A software analysis based vulnerabil-
ity detection system for smart contracts,’’ Stud. Comput. Intell., vol. 851,
pp. 69–81, Oct. 2020, doi: 10.1007/978-3-030-26574-8_6.

[53] X. Wang, J. He, Z. Xie, G. Zhao, and S.-C. Cheung, ‘‘ContractGuard:
Defend ethereum smart contracts with embedded intrusion detection,’’
IEEE Trans. Services Comput., vol. 13, no. 2, pp. 314–328, Apr. 2020,
doi: 10.1109/TSC.2019.2949561.

[54] M. di Angelo and G. Salzer, ‘‘A survey of tools for analyzing
ethereum smart contracts,’’ in Proc. IEEE Int. Conf. Decentralized Appl.
Infrastruct. (DAPPCON), Apr. 2019, pp. 69–78, doi: 10.1109/DAPP-
CON.2019.00018.

[55] J. Feist, G. Grieco, and A. Groce, ‘‘Slither: A static analysis framework
for smart contracts,’’ in Proc. IEEE/ACM 2nd Int. Workshop Emerg.
Trends Softw. Eng. Blockchain (WETSEB), May 2019, pp. 8–15.

[56] S.Wang, C. Zhang, and Z. Su, ‘‘Detecting nondeterministic payment bugs
in ethereum smart contracts,’’ in Proc. ACMProgram. Lang., vol. 3, 2019,
pp. 1–29, doi: 10.1145/3360615.

[57] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, ‘‘ContractWard:
Automated vulnerability detection models for ethereum smart contracts,’’
IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1133–1144, Apr. 2020, doi:
10.1109/tnse.2020.2968505.

[58] S. Zhang and J. H. Lee, ‘‘Smart contract-based secure model
for miner registration and block validation,’’ IEEE Access, vol. 7,
pp. 132087–132094, 2019, doi: 10.1109/ACCESS.2019.2940551.

[59] S. Akca, A. Rajan, and C. Peng, ‘‘SolAnalyser: A framework for
analysing and testing smart contracts,’’ in Proc. 26th Asia–Pacific
Softw. Eng. Conf. (APSEC), Dec. 2019, pp. 482–489, doi:
10.1109/APSEC48747.2019.00071.

[60] X. Yang, ‘‘Formal verification for ethereum smart contract using COQ,’’
Int. J. Electr. Comput. Energ. Electron. Commun. Eng., vol. 5, no. 6,
p. 126, 2018.

[61] C. F. Torres, J. Schátte, and R. State, ‘‘Osiris: Hunting for integer bugs
in ethereum smart contracts,’’ in Proc. 34th Annu. Comput. Secur. Appl.
Conf., Dec. 2018, pp. 664–676, doi: 10.1145/3274694.3274737.

[62] M. Wohrer and U. Zdun, ‘‘Smart contracts: Security patterns in the
ethereum ecosystem and solidity,’’ in Proc. Int. Workshop Blockchain
Oriented Softw. Eng. (IWBOSE), Mar. 2018, pp. 2–8.

[63] B. Jiang, Y. Liu, and W. K. Chan, ‘‘ContractFuzzer: Fuzzing smart
contracts for vulnerability detection,’’ in Proc. 33rd ACM/IEEE
Int. Conf. Automated Softw. Eng., Sep. 2018, pp. 259–269, doi:
10.1145/3238147.3238177.

[64] W. C. Yang and J. Peng, ‘‘Research on EVM-based smart contract runtime
self-protection technology framework,’’ in Proc. Adv. Intell. Syst., 2020,
vol. 1150, pp. 617–627, doi: 10.1007/978-3-030-44038-1_57.

[65] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, ‘‘Step by step
towards creating a safe smart contract: Lessons and insights from a cryp-
tocurrency lab,’’ in Financial Cryptography and Data Security (Lecture
Notes in Computer Science), vol. 9604. Berlin, Germany: Springer, 2016,
pp. 79–94.

[66] D. Magazzeni, P. Mcburney, and W. Nash, ‘‘Validation and verification
of smart contracts: A research agenda,’’ Computing, vol. 50, no. 9,
pp. 50–57, Oct. 2017, doi: 10.1109/MC.2017.3571045.

[67] S. O’Neal. (2020). Ethereum Miners Vote to Increase Gas Limit,
Causing Community Debate. Accessed: Jul. 30, 2020.[Online].
Available: https://cointelegraph.com/news/ethereum-miners-vote-to-
increase-gas-limit-causing-community-debate

[68] O. Solmaz. (2018). The Anatomy of a Block Stuffing AttackNo
Title. Accessed: Jul. 26, 2020. [Online]. Available: https://solmaz.
io/2018/10/18/anatomy-block-stuffing/

[69] (2019). SmartDec: Smartcheck. [Online]. Available: https://github.
com/smartdec/smartcheck

[70] W. Chen, Z. Zheng, E. C. H. Ngai, P. Zheng, and Y. Zhou,
‘‘Exploiting blockchain data to detect smart Ponzi schemes on
ethereum,’’ IEEE Access, vol. 7, pp. 37575–37586, 2019, doi:
10.1109/ACCESS.2019.2905769.

[71] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, ‘‘Securify: Practical security analysis of smart contracts,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2018,
pp. 67–82, doi: 10.1145/3243734.3243780.

[72] Mythril. Accessed: Aug. 27, 2021. [Online]. Available: https://github.
com/ConsenSys/mythril

[73] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, ‘‘EASYFLOW:
Keep ethereum away from overflow,’’ in Proc. IEEE/ACM 41st Int. Conf.
Softw. Eng., Companion, ICSE-Companion, Oct. 20199, pp. 23–26, doi:
10.1109/ICSE-Companion.2019.00029.

[74] T. Min, H. Wang, Y. Guo, and W. Cai, ‘‘Blockchain games: A sur-
vey,’’ in Proc. IEEE Conf. Games (CoG), Aug. 2019, pp. 1–8, doi:
10.1109/CIG.2019.8848111.

6618 VOLUME 10, 2022

http://dx.doi.org/10.1109/ACCESS.2020.2970495
http://dx.doi.org/10.1109/QRS-C.2019.00086
http://dx.doi.org/10.1109/QRS-C.2019.00086
http://dx.doi.org/10.1109/ACCESS.2019.2921624
http://dx.doi.org/10.2991/ijndc.k.190710.003
http://dx.doi.org/10.1109/ACCESS.2019.2911031
http://dx.doi.org/10.1016/j.cose.2019.101654
http://dx.doi.org/10.5220/0008909803170324
http://dx.doi.org/10.1109/IWBOSE.2018.8327567
http://dx.doi.org/10.1007/978-3-030-36938-5_26
http://dx.doi.org/10.1007/978-3-030-36938-5_26
http://dx.doi.org/10.1109/SANER.2017.7884650
http://dx.doi.org/10.1109/MNET.001.1800290
http://dx.doi.org/10.1145/2976749.2978362
http://dx.doi.org/10.1504/IJWGS.2018.095647
http://dx.doi.org/10.6633/IJNS.201709.19(5).01
http://dx.doi.org/10.1080/17579961.2017.1378468
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1109/Blockchain.2019.00059
http://dx.doi.org/10.1007/978-3-030-26574-8_6
http://dx.doi.org/10.1109/TSC.2019.2949561
http://dx.doi.org/10.1109/DAPPCON.2019.00018
http://dx.doi.org/10.1109/DAPPCON.2019.00018
http://dx.doi.org/10.1145/3360615
http://dx.doi.org/10.1109/tnse.2020.2968505
http://dx.doi.org/10.1109/ACCESS.2019.2940551
http://dx.doi.org/10.1109/APSEC48747.2019.00071
http://dx.doi.org/10.1145/3274694.3274737
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1007/978-3-030-44038-1_57
http://dx.doi.org/10.1109/MC.2017.3571045
http://dx.doi.org/10.1109/ACCESS.2019.2905769
http://dx.doi.org/10.1145/3243734.3243780
http://dx.doi.org/10.1109/ICSE-Companion.2019.00029
http://dx.doi.org/10.1109/CIG.2019.8848111

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

[75] N. Fatima Samreen and M. H. Alalfi, ‘‘Reentrancy vulnerability
identification in ethereum smart contracts,’’ in Proc. IEEE 3rd Int.
Work. Blockchain Oriented Softw. Eng., Feb. 2020, pp. 22–29, doi:
10.1109/IWBOSE50093.2020.9050260.

[76] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, ‘‘ReGuard: Find-
ing reentrancy bugs in smart contracts,’’ in Proc. 40th Int. Conf. Softw.
Eng., Companion, May 2018, pp. 65–68, doi: 10.1145/3183440.3183495.

[77] J.-W. Liao, T.-T. Tsai, C.-K. He, and C.-W. Tien, ‘‘SoliAudit:
Smart contract vulnerability assessment based on machine
learning and fuzz testing,’’ in Proc. 6th Int. Conf. Internet Things,
Syst., Manage. Secur. (IOTSMS), Oct. 2019, pp. 458–465, doi:
10.1109/IOTSMS48152.2019.8939256.

[78] M. Rodler, W. Li, G. O. Karame, and L. Davi, ‘‘Sereum: Protecting
existing smart contracts against re-entrancy attacks,’’ in Proc. NDSS,
2019, pp. 1–15.

[79] B. Ghaleb, A. Al-Dubai, E. Ekonomou, M. Qasem, I. Romdhani, and
L. Mackenzie, ‘‘Addressing the DAO insider attack in RPL’s Internet of
Things networks,’’ IEEE Commun. Lett., vol. 23, no. 1, pp. 68–71, 2019,
doi: 10.1109/LCOMM.2018.2878151.

[80] I. Ashraf, X. Ma, B. Jiang, and W. K. Chan, ‘‘GasFuzzer: Fuzzing
ethereum smart contract binaries to expose gas-oriented exception secu-
rity vulnerabilities,’’ IEEE Access, vol. 8, pp. 99552–99564, 2020, doi:
10.1109/ACCESS.2020.2995183.

[81] E. Albert, P. Gordillo, A. Rubio, and I. Sergey, ‘‘Running on
fumes: Preventing out-of-gas vulnerabilities in Ethereum smart con-
tracts using static resource analysis,’’ in Proc. 13th Int. Conf. Ver-
ification Eval. Comput. Commun. Syst. (VECoS), in Lecture Notes
in Computer Science, vol. 11847. Porto, Portugal: Springer, 2019,
pp. 63–78.

[82] King of the Ether: Post-Mortem Investigation. Accessed: Jul. 26, 2020.
[Online]. Available: https://www.kingoftheether.com/thrones/kingo
ftheether/index.html

[83] H. Wang, Y. Li, S.-W. Lin, L. Ma, and Y. Liu, ‘‘VULTRON: Catching
vulnerable smart contracts once and for all,’’ in Proc. IEEE/ACM 41st Int.
Conf. Softw. Eng., New Ideas Emerg. Results (ICSE-NIER), May 2019,
pp. 1–4, doi: 10.1109/ICSE-NIER.2019.00009.

[84] X. Wang, H. Wu, W. Sun, and Y. Zhao, ‘‘Towards generating cost-
effective test-suite for ethereum smart contract,’’ in Proc. IEEE 26th Int.
Conf. Softw. Anal., Evol. Reeng. (SANER), Feb. 2019, pp. 549–553, doi:
10.1109/SANER.2019.8668020.

[85] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, ‘‘VERX: Safety verification of smart contracts,’’ in Proc.
Oakland, 2020, pp. 1661–1677, doi: 10.1109/SP40000.2020.00024.

[86] S. Jumnongsaksub and K. Sripanidkulchai, ‘‘Reducing smart contract
runtime errors on ethereum,’’ IEEE Softw., vol. 37, no. 5, pp. 55–59,
Oct. 2020, doi: 10.1109/MS.2020.2993882.

[87] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and D. Tigano,
‘‘Design patterns for gas optimization in ethereum,’’ in Proc. IEEE
3rd Int. Workshop Blockchain Oriented Softw. Eng., Oct. 2020,
pp. 9–15.

[88] S. Eskandari, S. Moosavi, and J. Clark, SoK: Transparent Dishonesty:
Front-Running Attacks on Blockchain, vol. 11599. Cham, Switzerland:
Springer, pp. 170–189, 2020, doi: 10.1007/978-3-030-43725-1_13.

[89] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, ‘‘Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,’’ Proc. ACM Program. Lang., vol. 2, pp. 1–27, Oct. 2018, doi:
10.1145/3276486.

[90] H. Chen, M. Pendleton, L. Njilla, and S. Xu, ‘‘A survey on ethereum
systems security,’’ACMComput. Surv., vol. 53, no. 3, pp. 1–43, Jul. 2020,
doi: 10.1145/3391195.

[91] D. Kirillov, O. Iakushkin, V. Korkhov, and V. Petrunin, ‘‘Evaluation of
tools for analyzing smart contracts in distributed ledger technologies,’’ in
Computational Science and Its Applications (Lecture Notes in Computer
Science), vol. 11620. Cham, Switzerland: Springer, 2019, pp. 522–536,
2019, doi: 10.1007/978-3-030-24296-1_41.

[92] B. C. Gupta and S. K. Shukla, ‘‘A study of inequality in the
ethereum smart contract ecosystem,’’ in Proc. 6th Int. Conf. Internet
Things, Syst., Manage. Secur. (IOTSMS), Oct. 2019, pp. 441–449, doi:
10.1109/IOTSMS48152.2019.8939257.

[93] P. Hegedás, ‘‘Towards analyzing the complexity landscape of solid-
ity based ethereum smart contracts,’’ in Proc. 1st Int. Workshop
Emerg. Trends Softw. Eng. Blockchain, May 2018, pp. 35–39, doi:
10.1145/3194113.3194119.

[94] Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, and
X. Shi, ‘‘EVMFuzzer: Detect EVM vulnerabilities via fuzz testing,’’
in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., Aug. 2019, pp. 1110–1114, doi: 10.1145/3338906.
3341175.

[95] B. Marino and A. Juels, ‘‘Setting standards for altering and undoing
smart contracts,’’ inRule Technologies. Research, Tools, and Applications
(Lecture Notes in Computer Science), vol. 9718. Cham, Switzerland:
Springer, 2019, pp. 151–166, doi: 10.1007/978-3-319-42019-6_10.

[96] M.Alharby andA.V.Moorsel, ‘‘Blockchain based smart contracts: A sys-
tematic mapping study,’’ in Proc. Comput. Sci. Inf. Technol., Aug. 2017,
pp. 125–140, doi: 10.5121/csit.2017.71011.

[97] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘‘Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 839–858, doi: 10.1109/SP.2016.55.

[98] A. Unterweger, F. Knirsch, C. Leixnering, and D. Engel, ‘‘Lessons
learned from implementing a privacy-preserving smart contract in
ethereum,’’ in Proc. 9th IFIP Int. Conf. New Technol., Mobil-
ity Secur. (NTMS), Feb. 2018, pp. 1–5, doi: 10.1109/NTMS.2018.
8328739.

[99] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, ‘‘Zerocash: Decentralized anonymous payments from bit-
coin,’’ in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 459–474, doi:
10.1109/SP.2014.36.

[100] C. Natoli and V. Gramoli, ‘‘The blockchain anomaly,’’ in Proc. IEEE
15th Int. Symp. Netw. Comput. Appl. (NCA), Oct. 2016, pp. 310–317, doi:
10.1109/NCA.2016.7778635.

[101] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, ‘‘Town
crier: An authenticated data feed for smart contracts,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 270–282, doi:
10.1145/2976749.2978326.

[102] A. Ghaleb and K. Pattabiraman, ‘‘How effective are smart contract
analysis tools evaluating smart contract static analysis tools using bug
injection,’’ in Proc. Int. Symp. Softw. Test. Anal., 2020, pp. 415–427, doi:
10.1145/3395363.3397385.

[103] S. Azzopardi, J. Ellul, and G. J. Pace, ‘‘Monitoring smart contracts: Con-
tractlarva and open challenges beyond,’’ in Runtime Verification (Lecture
Notes in Computer Science), vol. 11237. Cham, Switzerland: Springer,
2019, pp. 113–137, doi: 10.1007/978-3-030-03769-7_8.

[104] I. Grishchenko, M. Maffei, and C. Schneidewind, ‘‘Foundations and
tools for the static analysis of ethereum smart contracts,’’ in Proc. Int.
Conf. Comput. Aided Verification, vol. 10981, 2018, pp. 51–78, doi:
10.1007/978-3-319-96145-3_4.

[105] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey, ‘‘EthIR:
A framework for high-level analysis of ethereum bytecode,’’ 2018,
arXiv:1805.07208.

[106] A.Mavridou andA. Laszka, ‘‘Tool demonstration: FSolidM for designing
secure Ethereum smart contracts,’’ in Principles of Security and Trust
(Lecture Notes in Computer Science), vol. 10804. Cham, Switzerland:
Springer, 2018, pp. 270–277, doi: 10.1007/978-3-319-89722-6_11.

[107] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, ‘‘KEVM: A
complete formal semantics of the ethereum virtual machine,’’ in Proc.
IEEE 31st Comput. Secur. Found. Symp. (CSF), Jul. 2018, pp. 204–217,
doi: 10.1109/CSF.2018.00022.

[108] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, ‘‘Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,’’ in Proc. 34th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2019, pp. 1186–1189, doi:
10.1109/ASE.2019.00133.

[109] M. Suiche, ‘‘Porosity: A decompiler for blockchain-based
smart contracts bytecode,’’ Def Con, vol. 25, p. 30, Oct. 2017.
[Online]. Available: https://www.comae.com/reports/dc25-msuiche-
Porosity-Decompiling-Ethereum-Smart-Contracts-wp.pdf.

[110] Solgraph. Accessed: Aug. 3, 2021. [Online]. Available: https://github.
com/crytic/rattle

[111] A. Dika and M. Nowostawski, ‘‘Security vulnerabilities in ethereum
smart contracts,’’ in Proc. IEEE Int. Conf. Internet Things, Aug. 2018,
pp. 955–962, doi: 10.1109/Cybermatics_2018.2018.00182.

[112] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, ‘‘Security assurance for smart contract,’’ in Proc. 9th IFIP
Int. Conf. New Technol., Mobility Secur. (NTMS), Feb. 2018, pp. 1–5, doi:
10.1109/NTMS.2018.8328743.

VOLUME 10, 2022 6619

http://dx.doi.org/10.1109/IWBOSE50093.2020.9050260
http://dx.doi.org/10.1145/3183440.3183495
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939256
http://dx.doi.org/10.1109/LCOMM.2018.2878151
http://dx.doi.org/10.1109/ACCESS.2020.2995183
http://dx.doi.org/10.1109/ICSE-NIER.2019.00009
http://dx.doi.org/10.1109/SANER.2019.8668020
http://dx.doi.org/10.1109/SP40000.2020.00024
http://dx.doi.org/10.1109/MS.2020.2993882
http://dx.doi.org/10.1007/978-3-030-43725-1_13
http://dx.doi.org/10.1145/3276486
http://dx.doi.org/10.1145/3391195
http://dx.doi.org/10.1007/978-3-030-24296-1_41
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939257
http://dx.doi.org/10.1145/3194113.3194119
http://dx.doi.org/10.1145/3338906.3341175
http://dx.doi.org/10.1145/3338906.3341175
http://dx.doi.org/10.1007/978-3-319-42019-6_10
http://dx.doi.org/10.5121/csit.2017.71011
http://dx.doi.org/10.1109/SP.2016.55
http://dx.doi.org/10.1109/NTMS.2018.8328739
http://dx.doi.org/10.1109/NTMS.2018.8328739
http://dx.doi.org/10.1109/SP.2014.36
http://dx.doi.org/10.1109/NCA.2016.7778635
http://dx.doi.org/10.1145/2976749.2978326
http://dx.doi.org/10.1145/3395363.3397385
http://dx.doi.org/10.1007/978-3-030-03769-7_8
http://dx.doi.org/10.1007/978-3-319-96145-3_4
http://dx.doi.org/10.1007/978-3-319-89722-6_11
http://dx.doi.org/10.1109/CSF.2018.00022
http://dx.doi.org/10.1109/ASE.2019.00133
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00182
http://dx.doi.org/10.1109/NTMS.2018.8328743

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

[113] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, ‘‘Scompile:
Critical path identification and analysis for smart contracts,’’ in Formal
Methods and Software Engineering (Lecture Notes in Computer Sci-
ence), vol. 11852. Cham, Switzerland: Springer, 2019, pp. 286–304, doi:
10.1007/978-3-030-32409-4_18.

[114] Solgraph. Accessed: Aug. 3, 2021. [Online]. Available: https://github.
com/raineorshine/solgraph.

[115] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, ‘‘Vandal: A scalable security analysis framework for smart
contracts,’’ 2018, arXiv:1809.03981.

[116] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, ‘‘ZEUS: Analyz-
ing safety of smart contracts,’’ Proc. NDSS, 2018, pp. 1–4, doi:
10.14722/ndss.2018.23082.

[117] M. Kaur, D. Singh, V. Kumar, B. B. Gupta, and A. A. Abd El-Latif,
‘‘Secure and energy efficient-based E-health care framework for green
Internet of Things,’’ IEEE Trans. Green Commun. Netw., vol. 5, no. 3,
pp. 1223–1231, Sep. 2021, doi: 10.1109/TGCN.2021.3081616.

[118] S. Makridakis and K. Christodoulou, ‘‘Blockchain: Current challenges
and future prospects/applications,’’ Future Internet, vol. 11, no. 12,
p. 258, Dec. 2019, doi: 10.3390/fi11120258.

[119] J. Kolb, M. AbdelBaky, R. H. Katz, and D. E. Culler, ‘‘Core concepts,
challenges, and future directions in blockchain,’’ ACM Comput. Surv.,
vol. 53, no. 1, pp. 1–39, May 2020, doi: 10.1145/3366370.

[120] J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, ‘‘Maintaining smart
contracts on ethereum: Issues, techniques, and future challenges,’’ 2020,
arXiv:2007.00286.

[121] T. Hewa, M. Ylianttila, and M. Liyanage, ‘‘Survey on blockchain
based smart contracts: Applications, opportunities and challenges,’’
J. Netw. Comput. Appl., p. 102857, Nov., vol. 2020, doi:
10.1016/j.jnca.2020.102857.

[122] T. Krupa, M. Ries, I. Kotuliak, K. Kosál, and R. Bencel, ‘‘Security issues
of smart contracts in ethereum platforms,’’ in Proc. FRUCT, Jan. 2021,
pp. 1–6, doi: 10.23919/FRUCT50888.2021.9347617.

[123] N. Noor, M. Johar, M. Alkawaz, A. I. Hajamydeen, and H. Al-Tamimi,
‘‘Vulnerability assessment on ethereum based smart contract applica-
tions,’’ in Proc. Int. Conf. Autom. Control Intell. Syst., 2013, pp. 13–18,
doi: 10.1109/I2CACIS52118.2021.9495892.

[124] A. Alkhalifah, A. Ng, P. Watters, and A. Kayes, ‘‘A mechanism
to detect and prevent ethereum blockchain smart contract reentrancy
attacks,’’ Frontiers in Computer Science, vol. 3, pp. 1–15, Nov. 2021, doi:
10.3389/fcomp.2021.598780.

[125] M. Kaur and D. Singh, ‘‘Multiobjective evolutionary optimization tech-
niques based hyperchaotic map and their applications in image encryp-
tion,’’Multidimensional Syst. Signal Process., vol. 32, no. 1, pp. 281–301,
2021.

[126] A. Ali, Z. Abideen, and K. Ullah, ‘‘SESCon: Secure ethereum smart
contracts by vulnerable patterns detection,’’ Security Commun. Netw.,
vol. 2021, Apr. 2021, Art. no. 2897565, doi: 10.1155/2021/2897565.

[127] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, ‘‘A survey on the secu-
rity of blockchain systems,’’ Future Gener. Comput. Syst., vol. 107,
pp. 841–853, Apr. 2020, doi: 10.1016/j.future.2017.08.020.

[128] L. Zhu, ‘‘Research on the security of blockchain data: A survey,’’ CoRR,
vol. abs/1812.02009, pp. 1–, Oct. 2018, doi: 10.1007/s11390-020-9638-
7.

[129] M. Saad, ‘‘Exploring the attack surface of blockchain: A systematic
overview,’’ CoRR, vol. abs/1904.03487, pp. 1–30, Apr. 2019.

[130] D. Harz and W. Knottenbelt, ‘‘Towards safer smart contracts: A survey
of languages and verification methods,’’ CoRR, vol. abs/1809.09805,
pp. 1–20, Sep. 2018.

[131] S. N. Khan, ‘‘Blockchain smart contracts: Applications, challenges, and
future trends,’’Peer-Peer Netw. Appl., vol. 14, 2901–2925, Oct. 2021, doi:
10.1007/s12083-021-01127-0.

[132] Z. Ang, ‘‘Ethereum smart contract security research: Survey and future
research opportunities,’’ Frontiers Comput. Sci., vol. 15, Apr. 2021,
Art. no. 152802, doi: 10.1007/s11704-020-9284-9.

[133] T. Hu, X. Liu, T. Chen, X. Zhang, X. Huang, W. Niu, J. Lu, K. Zhou,
and Y. Liu, ‘‘Transaction-based classification and detection approach for
Ethereum smart contract,’’ Inf. Process. Manage., vol. 58, no. 2, 2021,
102462, ISSN 0306-4573, doi: 10.1016/j.ipm.2020.102462.

[134] A. Bhardwaj, ‘‘Penetration testing framework for smart contract
Blockchain,’’ Peer-Peer Netw. Appl., vol. 14, 2635–2650, May 2021, doi:
10.1007/s12083-020-00991-6.

[135] A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, ‘‘A systematic
literature review of blockchain and smart contract development: Tech-
niques, tools, and open challenges,’’ J. Syst. Softw., vol. 174, Apr. 2021,
Art. no. 110891, doi: 10.1016/j.jss.2020.110891.

[136] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, ‘‘Com-
bining graph neural networks with expert knowledge for smart contract
vulnerability detection,’’ IEEE Trans. Knowl. Data Eng., early access,
Jul. 7, 2016, doi: 10.1109/TKDE.2021.3095196.

[137] H. Rameder, ‘‘Systematic review of ethereum smart contract
security vulnerabilities, analysis methods and tools,’’ M.S. thesis,
Dept. Inform., Techn. Univ. Wien, Vienna, Austria, 2021, doi:
10.34726/hss.2021.86784.

[138] B. Gupta, M. Tiwari, and S. Singh Lamba, ‘‘Visibility improvement
and mass segmentation of mammogram images using quantile separated
histogram equalisation with local contrast enhancement,’’ CAAI Trans.
Intell. Technol., vol. 4, no. 2, pp. 73–79, Jun. 2019.

[139] G. Hu, S.-H.-K. Chen, and N. Mazur, ‘‘Deep neural network-based
speaker-aware information logging (SAIL) for augmentative and alter-
native communication,’’ Blockchain Artif. Intell. Appl., vol. 1, no. 2,
pp. 138–143, Apr. 2021.

[140] P. Tolmach, Y. Li, S.W. Lin, Y. Liu, and Z. Li, ‘‘A survey of smart contract
formal specification and verification,’’ ACM Comput. Surv., vol. 54,
Jul. 2021, Art. no. 148, doi: 10.1145/3464421.

[141] S. Ghosh, P. Shivakumara, P. Roy, U. Pal, and T. Lu, ‘‘Graphology
based handwritten character analysis for human behaviour identifica-
tion,’’ CAAI Trans. Intell. Technol., vol. 5, no. 1, pp. 55–65, Mar. 2020.

[142] Y. Xu and T. T. Qiu, ‘‘Human activity recognition and embedded appli-
cation based on convolutional neural network,’’ J. Artif. Intell. Technol.,
vol. 1, no. 1, pp. 51–60, Dec. 2020.

[143] H. S. Basavegowda and G. Dagnew, ‘‘Deep learning approach for
microarray cancer data classification,’’ CAAI Trans. Intell. Technol.,
vol. 5, no. 1, pp. 22–33, Mar. 2020.

[144] X. Tang, K. Zhou, J. Cheng, H. Li, and Y. Yuan, ‘‘The vulnerabilities
in smart contracts: A survey,’’ in Advances in Artificial Intelligence
and Security, (Communications in Computer and Information Science),
vol. 1424, X. Sun, X. Zhang, Z. Xia, and E. Bertino, Eds. Cham, Switzer-
land: Springer, 2021, pp. 177–190, doi: 10.1007/978-3-030-78621-2_14.

[145] H. Chen, M. Pendleton, L. Njilla, and S. Xu, ‘‘A survey on ethereum
systems security,’’ACMComput. Surv., vol. 53, no. 3, pp. 1–43, Jul. 2020,
doi: 10.1145/3391195.

[146] D. Jiang, G. Hu, G. Qi, and N. Mazur, ‘‘A fully convolutional neural
network-based regression approach for effective chemical composition
analysis using near-infrared spectroscopy in cloud,’’ J. Artif. Intell. Tech-
nol., vol. 1, no. 1, pp. 74–82, Jan. 2021.

[147] R. Lawler. (Dec. 3, 2021). Someone Stole $ 120 Million in Crypto by
Hacking a DeFi Website. Accessed: Dec. 11, 2021. [Online]. Available:
https://www.theverge.com

SATPAL SINGH KUSHWAHA received the B.E.
degree in information technology from the Uni-
versity of Rajasthan, in 2006, and the M.Tech.
degree in computer science and engineering from
Rajasthan Technical University, Kota, in 2012.
He is currently a Ph.D. Research Scholar with
the Department of Computer Science and Engi-
neering, Manipal University Jaipur. As an author,
he published three books and researching mul-
tiple areas in network and security, information

retrieval, image processing. His research interests include blockchain tech-
nology and ethereum smart contract. He has cleared various international
certification programs, such as MCP (Microsoft Certified Professional using
C#). He also published several research papers in reputed conferences and
journals. During his tenure, he has enhanced the classroom’s learning envi-
ronment, academic and professional programs to cater to changing industry
needs in a dynamic business environment through a good mix of theoretical
and industry training modules.

6620 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-030-32409-4_18
http://dx.doi.org/10.14722/ndss.2018.23082
http://dx.doi.org/10.1109/TGCN.2021.3081616
http://dx.doi.org/10.3390/fi11120258
http://dx.doi.org/10.1145/3366370
http://dx.doi.org/10.1016/j.jnca.2020.102857
http://dx.doi.org/10.23919/FRUCT50888.2021.9347617
http://dx.doi.org/10.1109/I2CACIS52118.2021.9495892
http://dx.doi.org/10.3389/fcomp.2021.598780
http://dx.doi.org/10.1155/2021/2897565
http://dx.doi.org/10.1016/j.future.2017.08.020
http://dx.doi.org/10.1007/s11390-020-9638-7
http://dx.doi.org/10.1007/s11390-020-9638-7
http://dx.doi.org/10.1007/s12083-021-01127-0
http://dx.doi.org/10.1007/s11704-020-9284-9
http://dx.doi.org/10.1016/j.ipm.2020.102462
http://dx.doi.org/10.1007/s12083-020-00991-6
http://dx.doi.org/10.1016/j.jss.2020.110891
http://dx.doi.org/10.1109/TKDE.2021.3095196
http://dx.doi.org/10.34726/hss.2021.86784
http://dx.doi.org/10.1145/3464421
http://dx.doi.org/10.1007/978-3-030-78621-2_14
http://dx.doi.org/10.1145/3391195

S. Singh Kushwaha et al.: Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract

SANDEEP JOSHI (Senior Member, IEEE)
received the B.E., M.Tech., and Ph.D. degrees in
computer science and engineering. He is currently
a Senior Academician with experience in provid-
ing visionary leadership to students & imparting
quality management education to a wide range of
aspiring professionals. He mentored and guided
the students towards the successful future as a Pro-
fessor at Manipal University Jaipur, India. He pos-
sess profound knowledge of computer network,

network protocol, computer network & security, advance data structure &
algorithms, web technology, and system software engineering, with passion
for learning. He always tries to keep himself up to date with the latest
trends and techniques of the industry. During his tenure, he has enhanced the
learning environment in the classroom, designed academic/professional pro-
grams to cater to changing industry needs in a dynamic business environment
through a good mix of theoretical and industry training modules and worked
with lecturers to develop and maintain high curriculum standards, develop
mission statements, and set performance goals and objectives. He has proven
competencies in designing course curriculum and implementing innovative
instructional methodologies and equipped to provide authoritative leadership
to both academic and administrative personnel in the wider issues of running/
managing an academic institution of higher learning.

DILBAG SINGH (Member, IEEE) received the
M.Tech. degree in Computer Science and Engi-
neering Department, Guru Nanak Dev University,
India, in 2012, and the Ph.D. degree in com-
puter science and engineering from Thapar Uni-
versity, India, in 2019. He is currently working
as a Research Professor with the School of Elec-
trical Engineering and Computer Science, GIST,
South Korea. He was an Assistant Professor with
Manipal University Jaipur, India. He is the author

and coauthor of more than 70 SCI/SCIE indexed journals, including refereed
IEEE/ACM/Springer/Elsevier journals. He has also obtained three patents,
three books, and two book chapters, respectively. He is also acting as a Lead
Guest Editor of Mathematical Problems in Engineering, Hindawi (SCI and
Scopus Indexed), an Executive Guest Editor of Current Medical Imaging,
Bentham Science (SCIE and Scopus Indexed), and an Associate Editor of
Open Transportation Journal (Scopus). His research interests include com-
puter vision, medical image processing, machine learning, deep learning,
information security, and meta-heuristic techniques. He is a reviewer of more
than 100 well-reputed journals, such as IEEE, Elsevier, Springer, SPIE, and
Taylor and Francis.

MANJIT KAUR (Member, IEEE) received the
Master of Engineering degree in information
technology from Panjab University, Chandigarh,
Punjab, India, and the Ph.D. degree in the field
of image processing from the Thapar Institute of
Engineering and Technology, Patiala, Punjab. She
is currently working as a Postdoctoral Researcher
with the School of Electrical Engineering and
Computer Science, GIST, South Korea. She has
published more than 60 SCI/SCIE indexed papers

so far. Her research interests include wireless sensor networks, digital image
processing, and meta-heuristic techniques.

HEUNG-NO LEE (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering from the University of Cal-
ifornia at Los Angeles, Los Angeles, CA, USA,
in 1993, 1994, and 1999, respectively. He was
with HRL Laboratories, LLC, Malibu, CA, USA,
as a Research Staff Member, from 1999 to 2002.
From 2002 to 2008, he was an Assistant Profes-
sor with the University of Pittsburgh, PA, USA.
In 2009, he moved to the School of Electrical

Engineering and Computer Science, Gwangju Institute of Science and
Technology, Gwangju, South Korea, where he is currently affiliated. His
research interests include information theory, signal processing theory,
blockchain, communications/networking theory, and their application to
wireless communications and networking, compressive sensing, future
Internet, and brain–computer interface. He has received several prestigious
national awards, including the Top 100 National Research and Development
Award, in 2012, the Top 50 Achievements of Fundamental Researches
Award, in 2013, and Science/Engineer of the Month (January 2014).

VOLUME 10, 2022 6621

