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Abstract. Artificial Intelligence is becoming the key enabler of solutions to a
variety of problems including those associated with cyberspace operations.
Based on our analysis of cyber threats and opportunities in the coming years, we
assess it as very likely that teams consisting of humans and synthetic agents will
routinely work together in many if not most organizations. To fully leverage the
potential of these teams, we must continue to develop new paradigms in
human-machine teaming. Specifically, we must address three areas that are
currently in their infancy. Firstly, we need interfaces that allow all teammates to
communicate effectively with each other and seamlessly transfer tasks among
them. This must be true regardless of whether the endpoints are human or not.
Secondly, we will need cybersecurity operators with broad knowledge and
skills. They must know how their synthetic teammates “think,” when to task
them and when to question their reports. Thirdly, our AI systems must be able to
explain their decision-making processes to their human teammates. This paper
provides an overview of cyberspace threats and opportunities in the next ten
years and how these will impact human-machine teaming. We then apply the
key lessons we have learned while working a multitude of advanced research
projects at the intersection of human and AI agents to cyberspace operations.
Finally, we propose areas of research that will allow humans and machines to
better collaborate in the future.
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1 Introduction

The United States Department of Defense (DoD) defines cyberspace as a global domain
consisting many different and often overlapping networks (Joint Pub 3-12 2013).
Though many people equate cyberspace with the Internet, the latter is simply a subset
of the former. Cyberspace, after all, includes many networks (e.g., classified intelli-
gence networks) and systems that are not directly reachable from the Internet. Though
it is difficult to characterize the nature of these other networks and systems that
comprise cyberspace, we know a fair amount about the Internet. We know, for instance
that it is the largest, most complex system ever built by humans. By some estimates, it
consists of over 8 billion devices (Tung 2017) exchanging over 4 billion bytes of data
every second (“Internet Live Stats” 2018). Cyberspace, by definition, is even bigger.
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The size and speed of the Internet, coupled with its growth rate, prompted the
development and application of artificial intelligence (AI) techniques for performing
tasks that humans alone could no longer effectively do at this scope. It also spurred the
creation of novel capabilities that take advantage of, and indeed require, the very large
data sets that are available in cyberspace. The development of these techniques has
been organic and, while enabling localized capabilities, has sometimes hindered other
ones. In particular, we are concerned that some trends in both human and synthetic (i.e.,
AI-enabled) operator development are not supportive of effective human-machine
teaming. In Sect. 2 of this paper, we provide a brief introduction to AI in general and to
some of the specific concepts we’ll discuss later in the paper. On this foundation, we
describe in Sect. 3 future threats that motivate the need for better human-machine
teaming. We then describe advances in AI that allow the creation of synthetic cyber-
space actors in Sect. 4. In Sect. 5, we address the human members of future cyberspace
operations teams. Section 6 presents the need for AI that is explainable to humans as
the foundation of trust in these teams. These human-machine teams of the future are
described in Sect. 7. Finally, we offer our conclusions and recommended future work
in Sect. 8.

2 A Brief Introduction to AI

AI is fundamentally concerned with machines that solve problems and make decisions
or appear to think analogously to a human at some level of approximation. While there
is no single definition for the term, there exist different classes of AI that allows us to
formulate a tentative ontology, which we show in Fig. 1. A high-level bifurcation is
possible by differentiating the approach used to represent information or knowledge.
Symbolic approaches, as the name implies, use symbols (e.g., words) to represent the
atomic components of thought and generally rely on some kind of semantic rules to
process information. Alternately, non-symbolic approaches use numerical and often
distributed representations (reflected by patterns of activity across numerous processing
units).

In symbolic approaches to AI, system developers model real-world concepts, their
relationships and how they interact to solve a set of problems. This effort requires
considerable knowledge of both the problem and solution domains, which makes it
fairly labor-intensive. However, it yields results that are inherently explainable to
humans since they are derived from human knowledge models in the first place.
Symbolic AI systems include the expert systems that became prolific in the 1970s and
80s. These relied on extensive interviewing of subject matter experts and
time-consuming encoding of their expertise in a series of conditional structures. An
example of this approach is MYCIN, one of the first practical rule-based systems that
was developed to help physicians select antimicrobial therapies (Shortliffe 2012).
These early expert systems suffered from a fundamental inability to adapt or learn
absent human intervention in updating the knowledge base.

Non-symbolic AI gained momentum after many in the AI community, disappointed
with the limitations of symbolic approaches, looked to animal brains for inspiration. In
Artificial Neural Networks (ANN) each node receives multiple inputs from other
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nodes, typically in the form of a real number, and produces one or more outputs that are
the result of applying some function to those inputs. By applying weights to each
connection and allowing those weights to be modified through a feedback loop, the
ANN can be trained. There are many other non-symbolic approaches, such as proba-
bilistic ones, that have been successfully applied to problem sets in which the
knowledge engineering required in symbolic AI is not a feasible option.

Many modern AI systems are able to learn from experiences. Machine learning
(ML) refers to techniques that allow AI systems to adapt to changing inputs and ideally
improve their performance as a result. Though ML is equated with non-symbolic
approaches, it is also possible for some symbolic AI systems to learn. The Soar cog-
nitive architecture, for instance, is a symbolic production system capable of episodic
learning. A Soar agent could achieve a goal through a circuitous series of intermediate
steps, some of which will be successful. Over multiple experiences or episodes, the
agent condenses these steps into a shorter, more effective and efficient chain. This
process, called “chunking,” is one of the main ways in which Soar agents learn.

ML can take place with or without human help. In supervised ML, the system is
presented with inputs and must then produce an output, typically in terms of a clas-
sification (e.g., an email message is or is not spam). If the output is correctly classified,
the system receives positive reinforcement; otherwise, it may receive negative rein-
forcement. The learning or, more accurately, training process can be automated by
using labeled training data sets. If you remove the human from the process and don’t
use labeled data, a system can still learn through reinforcement learning. In this form of
ML, the system interacts with its environment in a sequence of observation-action pairs
where a reward is presented after each action. Using this approach, a system could learn
how to efficiently route network packets using as rewards the inverse of the number of
hops required. The key requirement for these ML approaches is a feedback process that
allows the agent to determine when its decisions are correct. This process can be

Fig. 1. A general ontology of AI techniques
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artificial (e.g., tagged data sets) or natural (e.g., observing the behavior of routed
packets).

3 Future Threats

The ability of AI to make increasingly complex decisions much faster than humans
could, all the while learning from its experiences has already delivered many benefits in
the service of humanity. The same capabilities, however, can cause unexpected and
undesirable effects as Microsoft learned when it developed chatbot that learned to
compose racially and sexually offensive tweets (Metz 2016) from its interactions with
thousands of people. Perhaps more concerning are scenarios in which AI systems are
intentionally developed and deployed to cause harm. It is, after all, logical to assume
that malicious cyberspace actors will leverage emerging technologies for their own
purposes.

If an attacker is using AI to operate at machine speed, the defender must be able to
work at least as quickly in order to be effective. This idea of synthetic agents attacking
and defending information systems with no humans in the decision-making loop
inspired the Defense Advanced Research Projects Agency (DARPA) Cyber Grand
Challenge (CGC), which brought together seven finalists to Las Vegas, Nevada in
August of 2016. The goal was for these cyber reasoning systems (CRS) to perform
automated vulnerability detection, exploit generation, software patching, and to
determine when it would be most advantageous to patch a vulnerability or exploit it on
a competing team’s CRS without human intervention (Brooks 2017). The message is
clear: in the future of cyberspace both attackers and defenders will, at least partially, be
autonomous agents. In fact, the leader of the winning team, David Brumley, founded
the company For All Secure to take autonomous vulnerability detection (and poten-
tially patching) to market.

It is not only machines who will be threatened by autonomous agents. Many
security experts anticipate a new breed of phishing emails generated by ML algorithms
that will be much more targeted, compelling and effective than human-generated ones
(Emmanuel 2017). One of the reasons why these messages will be more threatening is
that they will leverage the ability of data analytics and ML to scour vast data sources
for information with which to precisely target individuals at scale. The U.S. Army
already identified this micro-targeting trend as a feature of future wars (Kott et al. 2015)
for which our current counter-measures are ineffective.

The Social Network Automated Phishing with Reconnaissance (SNAP_R) system
(Seymour and Tully 2016) demonstrated a recurrent neural network (RNN) that is able
to tweet phishing messages that target specific users. During a limited experiment,
SNAP_R was four times faster than humans at sending out targeted attacks while
achieving an order of magnitude improvement in the target click rate. One year later,
DARPA announced its Active Social Engineering Defense (ASED) program, aimed at
autonomously identifying, disrupting, and investigating social engineering attacks. The
very existence of ASED underscores the difficulty and long-term significance that
DARPA attributes to this threat.
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Finally, as AI in general and ML in particular become increasingly important in our
lives, adversaries will develop attacks aimed directly at the ML mechanisms that are
designed to improve and defend our lives. Adversarial ML (AML) is an emerging field
of study concerned with attacks against online ML algorithms (Huang et al. 2011).
Early research has shown that ML classifiers are susceptible to three types of attacks
(Papernot et al. 2016). Confidentiality attacks entail gaining information on data used to
train the ML system (Shokri et al. 2017), its internal model (i.e. weights), or archi-
tectural (i.e. learning rate) parameters. Integrity attacks attempt to modify input to the
ML classifier in order to induce a particular output or behavior, such as causing an
image recognition system to misclassify a 2 as a 9 by modifying a few image pixels
(Carlini and Wagner 2017). Availability attacks attempt to deny access to the ML
classifier such as by generating numerous false positives. An ML-based IDS/IPS, for
example, is vulnerable to such attacks. As AML techniques mature, malicious actors
will employ them to manipulate the outputs of intelligent systems.

4 Synthetic Actors

Against this backdrop of technological opportunities and threats, research and devel-
opment of autonomous synthetic actors proceeds apace. Though much work to date has
focused on applications of ML to the detection and mitigation of cybersecurity inci-
dents, research is also taking place towards the development of more robust defensive
agents that can hunt for and neutralize threats on their networks. As we mentioned in
our threat discussion, we are seeing similar moves in the development of attack
capabilities. In fact, one of the noteworthy aspects of DARPA’s CGC was that it
demonstrated the feasibility (and, one might argue, inevitability) of autonomous
offensive and defensive agents fighting against each other with humans out of the loop
at least in some cases. While we have not yet seen documented cases of autonomous
synthetic attackers conducting real operations, many think that these incidents are not
too far in the future (Dvorsky 2017). Indeed, SoarTech has already demonstrated
cognitive agents that can perform defensive and offensive (e.g., penetration testing)
activities in virtualized environments.

SoarTech’s Simulated Cognitive Cyber Red-team Attacker Model (SC2RAM) is a
synthetic, offensive, cognitive agent that emulates real attackers by modeling the
complex thoughts, decision-making, and contextual understanding of a human inter-
active operator. Its goal-seeking behavior results in a virtually unlimited range of
realistic attacks. The current attacker agent, built on the Soar Cognitive Architecture (a
symbolic AI platform) can conduct multiple attacks including phishing with malicious
documents, remote exploitation, and SQL injection. A custom remote access toolkit
developed for this project provides additional persistent on-target capabilities such as
lateral movement and file exfiltration, providing a realistic experience for training
network defenders. The premise of red teaming and penetration testing, exemplified by
SC2RAM, is that it is better to test one’s own defenses against realistic but benign
attackers than it is to wait until the real adversaries do so. Since human penetration
testers are rare and expensive experts, it is logical to leverage synthetic agents in this
manner.
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It also makes sense to employ such agents when the scale of a problem requires a
very large number of interactions. Much of the research at the intersection of cyber-
security and AI uses non-symbolic approaches. Some of the first successful applica-
tions of ML to cybersecurity were in classification of spam email messages (Cohen
1996). Over the last two decades, these approaches have become remarkably accurate.
Today’s ubiquitous spam filters improve their performance through interaction with the
humans whose inboxes they protect. When the agent misclassifies a message, the
human has an opportunity to correct the error thus allowing the ML system to learn to
improve itself.

Given the role of these agents as first lines of defense for end points, much research
is needed in identifying vulnerabilities to AML in systems such as these spam filters or
the newer breeds of antimalware products that use ML to detect malicious software.
Here one could utilize machine learning techniques to make inferences on the training
set of another machine learning classifier in order to manipulate inputs to generate
desired outputs. For example, given an ML system that classifies software as benign or
malicious (e.g., an anti-malware application), one could imagine another system that
generates multiple variants of malware, each with small perturbations that don’t affect
its functionality. These variants could be sent to the classifier until it incorrectly decides
that the malware sample is benign. Given enough such misclassified samples, the AML
system can make inferences about what it takes to fool the defender. This AML versus
ML assessment could serve to harden network security applications by evaluating the
robustness of an already trained model, particularly when the internal classifier
parameters are unknown. Since this sort of assessments require many thousands or
millions of attempts to characterize the system under test, synthetic agents would be
well-suited to perform them.

Despite their ability to analyze vast amounts of information, non-symbolic
approaches like those in use for spam, malware and intrusion detection are less
effective at reasoning over the context and meaning of cyberspace activities. They are
ideally suited to answer the questions of what and even the how, but not the why.
Symbolic approaches, such as rule-based systems, on the other hand, are oftentimes
better for this purpose because they model higher-level cognitive processes and human
expertise. A promising area of research for more effective synthetic cyberspace actors is
the integration of symbolic and non-symbolic approaches to help us identify not just
the threats, but also their possible implications to our organizations and systems. Such
hybrid systems would be more capable in a wider variety of situations. It will be at that
point that synthetic actors could become real teammates to their human counterparts,
significantly enhancing the performance of our workforce.

5 Human Actors

One of the challenges in reviewing the current state of the cyber workforce is that there
is a paucity of quantitative assessment regarding the cognitive aptitudes, work roles, or
team organization required by cyber professionals to be successful. We argue that the
people who operate within the cyber domain need a combination of technical skills,
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domain specific knowledge, and social intelligence to be successful. They, like the
networks they operate, must also be secure, trustworthy, and resilient.

A concern in writing about human actors is that cyber professionals are generally
seen as a homogeneous, holistic classification. That said, due to the complexity and
rapid evolution of the tasks involved in cyber defense, it is important to note that there
is substantial heterogeneity between work roles and individual skillsets. By virtue of
this complexity in the task environment, cyber professionals need to work in teams.
While in the military context cyber teams tend to be teams of diverse talents, in the
private sector it is much more likely for smaller teams to be composed of
similarly-talented individuals rather than a group with diverse work roles and back-
grounds (Champion et al. 2012). Recent research has identified that cybersecurity
teams are better able to solve complex tasks than individual analysts, potentially due to
the distribution of expertise across analysts (Rajivan 2014; Rajivan et al. 2013; Rajivan
and Cooke, in press). For instance, performance on incident triage was highest with a
diverse group of heterogeneous talents as opposed to a team with members of similar
background and skills. (Rajivan 2013). A limitation of research into cyber teamwork is
that they have not examined different organizations of teams or combinations of teams.
This future research is essential to determine the correct make-up of the future cyber
workforce.

Champion et al. (2014) investigated the contribution of informal education to
developing cyber security expertise and found that 69 of 82 professionals reported that
informal education supplementation was a prerequisite for career success. Furthermore,
40% of professionals felt that job experience was the highest factor in positive per-
formance over degree of knowledge/education (12%). Many professionals anecdotally
reported that those receiving supplemental on-the-job training and mentoring exhibited
the highest performance benefits as measured by future career success. Similarly,
Asgharpour et al. (2007) found that operators who subjectively rated themselves with
higher levels of expertise tended to have both more and more diverse competencies
than those with less self-professed expertise.

Cognitive task analyses have identified that cyber professionals need to exhibit
strong situational awareness (Jajodia et al. 2010), including juggling concurrent sources
of information regarding the health of the network, historical and current network
activity, and performing a continual assessment of risk. For recent meta-analyses see
Franke and Brynielsson (2014), and Onwubiko and Owens (2011). Similarly, through
the use of structured interviews, Goodall et al. (2009) interviewed twelve cyber pro-
fessionals and identified that the requirement for situated knowledge (i.e., knowledge of
the local environment) made intrusion detection a relatively unique task and chal-
lenging to transfer expertise to other tasks in the cyber domain. This required triage
teams to interface with local workers to understand the topology and peculiarities of the
local network to determine whether an intrusion had occurred and what remedies were
available.

There are numerous tools to process this incoming information (e.g., Bro and Snort
for intrusion detection), however, there is just too much information for a human actor
to successfully process, and critical misses are inevitable. A human teamed with a
machine, however, has the potential to cover a much wider set of attack vectors
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because the machine does not have the same attentional limitations and can do a more
thorough assessment of making sense of large swaths of incoming data.

Before proceeding to discuss the importance of AI systems that can interact with
human actors, it is important to understand how we are training our cyber workforce
and to identify any gaps in training. The Department of Homeland Security’s National
Initiative for Cybersecurity Careers and Studies (NICCS) developed a Cybersecurity
Workforce Framework (Newhouse et al. 2016) to provide a base set of work roles for
the cyber workforce. While this ontology was not empirically justified, it represents the
most well-documented rostering of work roles in the cyber domain. This collection
includes nine work-role categories, 31 specialty areas, and over 1000 types of
knowledge, skills, and abilities. Major categories are described in Table 1.

Securely Provision roles revolve around the more traditional information technol-
ogy field including software developers, computer programmers, and network archi-
tects. The Operate and Maintain roles include System Administrators, Knowledge
Management, and Security Analysts. The Oversee and Govern roles include managerial
roles, Cyber Law, Policy Development, and Education. The Protect and Defend roles
include Cyber Analysts (Operators) and Network Defenders. The Analyze, Collect and
Operate, and Investigate roles all encompass the broad field of Digital Forensics and
will tend to be government or law enforcement positions (Caulkins et al. 2016).

In general, cyber professionals in the Securely Provision, Operate and Maintain,
and Protect and Defend work roles must have good mental flexibility and pattern
matching abilities (Baker 2016; Ben-Asher and Gonzalez 2015; Champion et al. 2014).

Table 1. Cybersecurity Workforce Framework. Reproduced from (Newhouse et al. 2016,
p. 14).

Work-role
category

Description

Securely
provision

Conceptualizes, designs, and builds secure information technology
(IT) systems, with responsibility for aspects of systems and/or networks
development

Operate and
maintain

Provides the support, administration, and maintenance necessary to ensure
effective and efficient information technology (IT) system performance
and security

Oversee and
govern

Provides leadership, management, direction, or development and
advocacy so the organization may effectively conduct cybersecurity work

Protect and
defend

Identifies, analyzes, and mitigates threats to internal information
technology (IT) systems and/or networks

Analyze Performs highly specialized review and evaluation of incoming
cybersecurity information to determine its usefulness for intelligence

Collect and
operate

Provides specialized denial and deception operations and collection of
cybersecurity information that may be used to develop intelligence

Investigate Investigates cybersecurity events or crimes related to information
technology (IT) systems, networks, and digital evidence
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They will have to possess significant skill and knowledge about computer operating
systems and using analytical tools for such things as network scanning, network
mapping, and vulnerability analysis. This task environment involves scanning large
numbers of network events and (generally false) alerts across multiple computer
screens with the goal of identifying threats while minimizing false alerts (D’Amico and
Whitley 2008).

A limitation of the NICCS Workforce Framework is that, of the 1060 types of
knowledge, skills, and aptitudes, fewer than ten describe teamwork or working with AI.
This implies that the Framework paints an incomplete picture of workforce proficiency
(Cook 2014). Furthermore, the development of any cyber workforce that neglects the
social aspect of human behavior on the network neglects a critical component of the
cyber domain. For instance, cyber defense would be aided by an understanding of
human behavior and how it introduces risk to the network (Asgharpour et al. 2007;
Pfleeger and Caputo 2012). We should leverage AI and humans’ capabilities to
maximize information exchange so each level processes the right ‘kinds’ of information
to be most effective. Under this view AIs should process the large swaths of incoming
poorly-structured data and distill this data into a format that can be readily presented to
a human operator. The human operator can then perform high-level strategic inference
over this well-structured information from the AI. We now know that human operators,
though, will not use this data unless they can understand why the AI makes its
recommendations.

6 Explainable AI

Most AI systems today are not designed to (nor can they usually) explain to their
human users the manner in which they arrived at their conclusions. The reason is that
most AI developed to date for cybersecurity applications is non-symbolic. As we
explained in our introduction to AI earlier, these approaches, unlike symbolic ones, are
not inherently explainable. System designers would have to deliberately develop
explanation mechanisms, which is something seldom seen in the field. Faced with such
opacity, many users choose to blindly trust the computer, which is a phenomenon that
has been called the “in screen we trust” effect (Aiken 2017). The option is to distrust
the computer and ignore its decisions if they seem unreasonable. Some systems,
however, might not allow this option if their AI mechanisms are part of closed decision
loops that don’t allow real-time human interference.

In order to develop and maintain the trust that is inherent in teaming, AI systems
must be able to explain their conclusions to human teammates. In this regard, symbolic
AI approaches such as expert systems and cognitive architectures are better suited
because they model human knowledge and thought processes respectively. Their very
nature is similar to higher level human thought constructs, which in most cases makes it
simpler for them to present their causal chains to humans. Conversely, this nature also
makes it easier for humans to point out errors or omissions in their synthetic team-
mates. The Soar cognitive architecture, for instance, uses goal graphs to simulate
human cognitive processes, which naturally lends itself being explainable to people by
representing the synthetic decision-making processes as goal trees.
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Visualizing non-symbolic systems like ML processes, on the other hand, has tra-
ditionally been more difficult. The reason for this is that they mostly rely on mathe-
matical models and processes. To this end, the Defense Advanced Research Projects
Agency (DARPA) is pursuing its eXplainable AI (XAI) program, to which the authors
of this paper are both contributing. One of projects in this program is XAI for the
Veterans’ Transition Assistance Program (XAI-VTAP), which is geared towards
matching the resumes of veterans to open job postings. Some of the work being done in
this project uses novel techniques to provide an unprecedented level of visibility into
how ML algorithms arrive at conclusions. Figure 2 shows how and why the system
matched a specific resume to multiple occupational categories. The top part of the
figure shows how good of a fit a candidate is against each category and provides
examples from that person’s resume. The bottom part illustrates how various indicators
were ultimately mapped to various categories. One could imagine job seekers using this
feedback as a training aid to create better resumes in general, as well as resumes that
improve their odds of getting specific jobs.

While such explainability could lead to better employment opportunities and
possibly improve resume-writing skills for veterans and other job seekers, it also
enables the threats to AI systems posed by AML. While there are many types of AML,
the one that is most relevant to our discussion is the deliberate manipulation of the data
inputs to an ML mechanism so that it fails to function as intended. This could happen if
an adversary determines how an ML-based span filter works and then crafts span
messages that are not identified as such and thus are delivered to a victim’s inbox. It
could also happen if the adversary pollutes the training data set for an ML-based
product so that it is trained to correctly identify spam messages except those that have a
particular set of characteristics that only the adversary knows. This would then allow

Fig. 2. User interface prototype for Explainable AI to support Veterans Transition Programs
(XAI-VTAP)
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only that adversary to bypass the detection mechanism. The knowledge that can be
gained through explainable AI facilitates AML techniques.

Still, explainability is crucial to our human-machine teaming efforts for three rea-
sons. Firstly, it allows trust to be developed between humans and their synthetic
teammates. Autonomous AI agents are likely to reach some seemingly far-fetched
conclusions that may stretch their credulity of their human counterparts. In those
situations, it is necessary to be able to walk the human through the thought process.
Secondly, the AI system’s conclusions will only be as good as the models they have
and the learning they have been able to do on their own. It is entirely possible that some
misfits may occur, in which case the human will be able to detect the error, point it out
to the AI system, and allow it to learn from the experience. Thirdly, synthetic team-
mates have tremendous potential as training tools, which can only be realized if it is
able to explain itself to those who are learning from or with that system.

7 Human-Machine Teaming

The notion of shared mental models between humans and machines is a common
thread when examining human-centered big data research. Mental models provide a
representation of situation, various entities, capabilities, and past decisions/actions.
These models are dynamic, with analyst and model engaged in a continuous production
loop. In addition, from a purely human level there is research on teamwork (Baumann
and Bonner 2013) and the degree to which teammates from different backgrounds have
overlapping shared mental models (Bearman et al. 2010). There is also research on the
degree to which multiple agents can recognize a common plan from reading large
corpora (Paletz 2014).

Teams of security analysts are in many instances, a loose association of individuals,
rather than a functioning team (Champion et al. 2012). A functioning professional team
is a “purposive social system” (Hackman and Katz 2010), in which members of the
team have diverse backgrounds, identified by role and work together in an interde-
pendent manner towards common objectives (Salas et al. 1992). Team effectiveness
largely depends upon appropriate leadership, team structure, communication, collab-
oration and distribution of tasks. Communication is the key medium by which human
teams form relationships, collaborate and share information (Cooke et al. 2013).
Communication is the conduit to transform individual expertise and situational
awareness to team level knowledge and situational awareness.

Field studies with security analysts found that communication and collaboration
between security analysts was an integral aspect of effective defense particularly during
a widespread security crisis (Goodall et al. 2009; Jariwala et al. 2012). Lab experiments
on collaboration during the threat detection have also found evidence that cooperation
between security analysts during triage analysis augments signal detection perfor-
mance, particularly in novel and complex situations (Rajivan et al. 2013). However,
during collaborative analyses, analysts may fail to contribute requisite expert knowl-
edge and demonstrate biases in the way information is pooled from each other, leading
to communication losses affecting threat detection performance (Rajivan 2014).
Communication across the hierarchy of security analysts have also been observed to be
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inefficient and largely one-directional (bottom-up). Tools for collaborative threat
detection developed using human systems engineering principles would help in miti-
gating such losses in communication between security analysts (Rajivan 2014).

Leadership is also crucial to security defense team development and performance
(Buchler et al. 2017). Typically, an individual in a leadership role is expected to:
develop team capabilities, facilitate problem solving, provide performance expecta-
tions, synchronize and integrate team member contributions, clarify team member roles
and engage in meetings and feedback (Salas et al. 1992; Simsarian 2002). Field studies
on security leadership showed that leadership is a significant predictor of defense
performance. In one such study, two security teams, otherwise equivalent in skills,
experience and knowledge, was observed to demonstrate widely different defense
performance primarily due to differences in leadership approach and amount of col-
laboration (Jariwala et al. 2012). In a subsequent study, it was found that functional
specialization and adaptive leadership strategies are important predictors of security
defense performance (Buchler et al. 2017). Except for these handful of studies, the
determinants of effective teamwork and leadership among security analysts is still an
emerging area.

Collaboration, communication and knowledge integration is necessary for accurate
and expeditious correlation analysis. From past team research, it is evident that teams
often don’t realize their full potential and could fail for a multitude of reasons. Loss in
team processes such as communication would lead to sub-optimal decision making. For
example, collaborative threat detection requires the exchange of expert information
between security analysts. Previous research has demonstrated that teams may not be
effective in exchanging novel information. Particularly, uneven information distribu-
tion biases people to share, more often, information that are known to majority in the
team and prevents them from sharing and associating unique information available with
them (Stasser and Titus 1985). The effect of such team-level biases on security team
collaborations are largely unknown.

Experiments on team interactions need to be conducted ideally in context (through
field studies) or using simulation environments. Due to restricted access to real world
cyber protection teams and due to lack of importance currently given to team process
metrics in cyber defense exercises (Granåsen and Andersson 2016), experiments on
team interactions in cyber defense can instead be conducted in the lab using simulation
systems that recreate realistic team interactions and work flows between study par-
ticipants which would in turn require the participants to exercise some of the same
cognitive process involved while conducting cyber defense in the real world (Cooke
and Shope 2004).

We argue that in order to incorporate machines into human teams effectively, they
must be natural to use, seamlessly integrate into the task environment, and provide a
subjective improvement in effectiveness. Ideally, a single human operator (or small
team of operators) would be able to supervise multiple AIs (Chen and Barnes 2014;
Pellerin 2015; Trexler 2017). The goal of the AI is to process the massive amount of
incoming information, present it efficiently to the human operator, make low-level
decisions, and help the human operator make high-level strategic decisions. This AI
will be able to make decisions at the speed of cyberspace and adapt to new attack
vectors in near real-time, which is orders of magnitude faster than a human operator.
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We foresee that within the next decade, the war for cyberspace will be fought between
nations’ AIs, and the skill of the operators and effectiveness of the AI’s algorithms will
be the deciding factor.

As such, it is essential for human operators to trust their AIs. Petraki et al. (2015)
argue that it is important to have mutual predictability and adaptability in order
engender trust. As previously discussed, that is one of the main goals of DARPA’s
eXplainable AI Program. The ability of the AI to be able to adapt to a human operator’s
goals, and for the operator to query the underlying question as to ‘why’ a decision was
made is key to trusting in the AI’s automation. One such technique is to supplement
traditional AI techniques with models that approximate human behavior, such as in the
Soar cognitive architecture and the ACT-R cognitive architecture.

In summary, by leveraging AIs to do much of the complex sensemaking required in
many cyber operations tasks, we argue that it is possible to maximize a human oper-
ator’s ability to conduct strategic operators effectively, even in the face of an over-
whelming amount of incoming data. We argue that AIs need to seamlessly integrate
with humans, and that they need to be explainable in order for human teammates to
trust their output.

8 Conclusions

From the foregoing, we posit that there are three key elements of effective
human-machine teaming in cyberspace: effective intra-team communications mecha-
nisms, a sophisticated and diverse cyber workforce, and AI systems that can readily
explain the rationales for their decisions to their human teammates.

We have already established that communication is the key medium by which
teams form relationships, collaborate and share information. It is a logical extension of
this premise to assert that whatever the team composition (e.g., human, synthetic), as
long as there is at least one human in the mix, effective communications will be
required to build and maintain the team’s effectiveness. Even if there are no humans in
a team of cyberspace actors, communications will be key, albeit in a somewhat dif-
ferent form.

It will also be important to ensure that the human actors that are teaming with AI
systems are knowledgeable of the capabilities and limitations of the underlying tech-
nologies. In other words, to fully leverage the potential of our synthetic teammates, we
will need cybersecurity operators with broad knowledge and skills, and who know
when to task agents and when to question their reports. There is a dearth of research in
this area, so much work needs to be completed before we can quantify the requirements
for humans in an effective human-machine cybersecurity team.

Finally, the skills of the human actors will be excessively tasked unless their
synthetic teammates are able to explain to them the manner in which they reached a
specific decision. This requirement for explainable AI addresses two critical aspects of
effective teaming: trust and correctness. An important element of teamwork is trust,
which can be eroded by unexpected behaviors, particularly those that could seem to
undermine or threaten mission accomplishment. If a synthetic agent is incapable of
explaining to its teammates how it arrived at a particular conclusion, it will not
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engender (and may erode) trust. Furthermore, since it may likely be infeasible to
develop a perfectly correct AI system, the ability to explain itself will allow its human
teammate to identify logical or syntactical errors.

Given that it is likely that AI will play an increasingly important role in the future of
cybersecurity, it is imperative that we develop better constructs for human-machine
teaming. These should be focused on effective communications, human workforce
development, and explainable AI. Though much research is needed in all three areas,
we can’t afford to take the risk of not getting this right. Our cybersecurity depends on it.
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