Mohan Bhatia

Banking 4.0

The Industrialised Bank of Tomorrow

Contents

L	Indu	istrialise	e and Innovate to Deliver Banking 4.0 Services	1
	1.1	Introd	uction: Evolution of Banking	1
		1.1.1	Banking 1.0: System of Record	
			on Mainframe-Enabled Business Model	1
		1.1.2	Banking 2.0: System of Record on 4GL	
			Technology-Enabled Business Model	1
		1.1.3	Banking 3.0: Self-Service for Payments-Enabled	
			Business Model	2
	1.2	Major	Shortcomings of Banking 3.0	3
		1.2.1	Third-Generation Banks Invested in Self-service	
			Rather Than Delivering Digital Experience	3
		1.2.2	Third-generation Banks Are Under-invested	
			in the Back Office and Mid Office	4
		1.2.3	Third-generation Banks Are All-pervasive With	
			Data and Application Duplication	4
		1.2.4	Inability to Create a Business Case for Technology	
			Investment	5
	1.3	Bankii	ng 4.0: Services Delivered by Tomorrow's	
			rialised Bank	6
		1.3.1	The Banking 4.0 Vision Statement	6
		1.3.2	The Industrialised Bank of Tomorrow	9
		1.3.3	Delivering Digital Experience to Customers,	
			Partners, and Employees	11
	1.4	The Si	ix Engines of Industrialisation and Innovation	15
		1.4.1	Technology Investments	15
		1.4.2	Deliver Digital Experience	15
		1.4.3	Embedded Innovation	16
		1.4.4	Intelligent Process and Technology	16
		1.4.5	Industrialised Data	16
		1.4.6	Banking AI As a Service	17
	1.5	Concl	usion—Banking 4.0 Is an Iterative Process	17

xviii Contents

2	Tact	ical Appı	roach to the Industrialisation	19
	2.1		ction—Manual Tasks in Banking Processes	19
		2.1.1	The Genesis of Manual Processes	19
		2.1.2	Legacy Applications Use GUI for Data Capture	20
		2.1.3	15–20% of Employees at Banks Manage Data	
			and Documents for Credit Management	20
		2.1.4	15–20% of Employees at Banks Manage Financial	
			Crimes Prevention Data	21
		2.1.5	5–10% of Employees at Banks Manage Data	
			for Financial Risk and Regulatory Reporting	22
	2.2	Automa	ation of Manual Tasks Versus Industrialisation	
		of the I	Bank	22
		2.2.1	Third-Generation Technology Automates High	
			Volume, Low Complexity Manual Tasks	22
		2.2.2	Robotic Process Automation (RPA) Automates	
			Low Volume Low Complexity Manual Tasks	23
		2.2.3	Machines at Industrialised Bank Manage High	
			Volume High Complexity Processes	23
		2.2.4	To Industrialise the Bank—Across the Valley	
			of Investment, Innovation, and Alignment	24
		2.2.5	Preliminary Approach to Legacy Application	
			Management Through RPA	26
		2.2.6	Tactical Approach to Legacy Application	
			Modernisation	26
	2.3	Robotio	c Process Automation (RPA) Automates Manual	
		Tasks		27
		2.3.1	RPA Tool Automates Granular Tasks	27
		2.3.2	Case Study: Survey of Commercially Available	
			RPA Tools for Capabilities to Automate a Banking	
			Process	28
		2.3.3	Case Study: RPA Delivers Suboptimal Benefits	31
		2.3.4	Case Study: Automate the Process and Not	
			the Tasks	32
		2.3.5	Automation in Handling Unstructured Data Needs	
			Cognitive Capabilities	34
		2.3.6	Cognitive Process Automation Is Contextual	
			to the Banking Process	35
		2.3.7	Case Study: Dictionary and Domain Covered	35
		2.3.8	Cognitive Computing Bots Available on Cloud	
			Platforms	35
		2.3.9	Case Study: Cloud-Provided Bots	35
		2.3.10	Case Study: Pre-built Integration and Connector	
			Services	36
		2.3.11	Industrialisation of Bots Through Orchestration	
			on Cloud	36

Contents xix

		2.3.12	State Bank of India YONO Case Study—Digital Retail Banking Platform Embedding Automation into the Repurposed Legacy Applications	3
	2.4		ision–Leverage Industrialisation Engines for Tactical ation of Automation Benefits	3
3	Inve	sting in A	Alignment of Industrialisation and Innovation	
		_		4
	3.1	Introdu	action—By Default Industrialisation and Innovation	
			es Are Never Aligned	4
		3.1.1	Misaligned Engines Start Accumulating Technical Debt	4
	3.2	Build-U	Up of Technical Debt	4
		3.2.1	Technical Debt Built up Due to Factors Beyond the Control of the Bank	4
		3.2.2	Technical Debt Built up Due to the Decisions	
		3.2.2	and Choices Made by the Bank	4
		3.2.3	Technical Debt Build-Up Creates Existential	
			Level Questions for the Bank	2
	3.3	Manag	ing Technical Debt	2
		3.3.1	Case Study: UBS Has Budgeted to Spend 10%	
		222	of Revenue on Technology	2
		3.3.2	Empirical Study of Managing Technical Debt	2
	2.4	A .1 4:	at 12 Banks	-
	3.4		ng Industrialisation and Innovation Engine nent Framework to Manage Technical Debt	2
		3.4.1	The Project-Based Approach to Managing	
		3.4.1		4
		2.4.2	Technology Debt Establish a Bank-Wide Vision for Industrialisation	
		3.4.2		4
		2.4.2	and Innovation	•
		3.4.3	Mapping the Project-Based Approach to Industrialisation and Innovation Engine	
			Framework	4
	3.5	Monoo	ing the Alignment Process	4
	3.3	3.5.1	Continuously Rediscover Banking 4.0 Vision	4
		3.5.2	Promote and Adopt Banking Technology	•
		3.3.2	Standards	4
		3.5.3	Build Banking AI for the Bank	4
		3.5.4	Adopt ISO 20022 Standards Internally in the Bank	•
		3.3.4	for Every Data and Process	4
		3.5.5	Augment IT Governance to Encourage, Enable,	•
		5.5.5		4
		3.5.6	and Enforce Paying off Technical Debt	
		3.5.0 3.5.7	Make Technology All-Pervasive	4
		3.3.7	Continuously Benchmark Innovation	

xx Contents

	3.6		sion—Continuously Rediscover, Benchmark,	60
4	Indu	ctrialicin	ng Data	61
•	4.1		action—Changed Data Requirements at Banks	61
		4.1.1	Deliver Digital Experience in Real Time	61
		4.1.2	Process High Volumes of Data	62
	4.2		dicators of Data Industrialisation	65
	2	4.2.1	Aligned Industrialisation and Innovation Engines	0.0
			with Data Industrialisation Engines	66
		4.2.2	Deliver Data in a Managed Service Mode	66
		4.2.3	Better Certainty in Data Service Delivery	66
		4.2.4	Deliver Greater Consistency and Accuracy	
			in Models and Analytics	66
		4.2.5	Deliver Industrialised Model and Analytics	
			Development, Training and Deployment	67
		4.2.6	Manage All Data Types	67
		4.2.7	Deliver Conversational Banking at Scale	67
		4.2.8	Better Data Governance	67
		4.2.9	Industrialised Data Privacy Compliance	68
		4.2.10	Empowered Business Managers	68
	4.3	Industr	ialise Data Integration	68
		4.3.1	Convergence of Data Preparation and Data	
			Integration Tools	69
		4.3.2	Industrialise Data Preparation	69
		4.3.3	Data Wrangling for Machine Learning Models	70
		4.3.4	Case Study: Google Cloud Data Wrangling Tool	70
		4.3.5	Industrialised Data Preparation Tools Are	
			Embedded with Statistical and Visualisation	
			Capabilities	71
		4.3.6	Case Study: Google Cloud Datalab Tool	
			to Explore, Analyse, Transform, and Visualise	
			Data for Building Machine Learning Models	71
		4.3.7	Case Study: BigQuery Geospatial Visualisation	
			Techniques	72
		4.3.8	Embedding Geospatial Visualisation	
			into Applications Empowers Business Managers	72
		4.3.9	Case Study: Data Stream Processing Tools	
			on Google Cloud	72
		4.3.10	Embed Data Integration into Applications	73
		4.3.11	Case Study: Building a Data Pipeline to Migrate	
			Data to BigQuery	73
	4.4		Data Platform as the Data Industrialisation	
		and Inn	novation Engine	73
		4.4.1	Cloud Data Platform Optimises Data Integration	74

Contents xxi

	4.4.2	Cloud Data Platform Augments Data Storage	74
4.5	Case St	udy—Cloud Data Platform	76
	4.5.1	Case Study: Google Cloud Data Platform	
		High-Level Architecture	76
	4.5.2	Data Ingestion and Integration Tools from GCP,	
		AWS, and Azure	76
	4.5.3	Building and Orchestrating Data Pipelines	
		on GCP, AWS, and Azure	77
	4.5.4	Data Search on Data Catalog Capabilities on GCP,	
		AWS, and Azure	77
	4.5.5	SQL Data Modules on GCP, AWS, and Azure	78
	4.5.6	NoSQL Data Capabilities in GCP, AWS, Azure	78
	4.5.7	Case Study: BigQuery—Industrialised Big Data	
		on Cloud	79
	4.5.8	Data Storage on GCP, AWS, and Azure	80
	4.5.9	Analytics and Visualisation on GCP, AWS,	
		and Azure Platform	80
	4.5.10	AI Machine Learning and AI as a Service Platform	0.4
		on GCP, AWS, and Azure	81
4.6		ialise Data Catalog to Deliver Data Governance	82
	4.6.1	Case Study: Data Catalog to Implement Enterprise	0.2
	4.60	Data Governance Policy	82
	4.6.2	Data Catalog as a Tool for Data Governance	82
	4.6.3	Deliver Re-Usable Tag Templates to Build	0.2
	1.6.1	Consistency in Technical and Business Contexts	83
	4.6.4	Implement Enterprise-Wide Data Governance	0.7
	1.65	on Data Catalog	85
	4.6.5	Tag Metadata at Data Asset Hierarchies	85
	4.6.6	Establishing Business Lineage to Empower	06
	167	Business Managers	86
4.7	4.6.7	Industrialise the Data Quality Process	87
4.7	4.7.1	ture of Data Services	87
	4.7.1	Case Study: Monitor Customer Behaviour in Real Time	87
	4.7.2	Case Study: An Investment Bank Creating	07
	4.7.2	and Selling Thousands of Insightful Datasets	
		Every Year	88
	4.7.3	Case Study: The BBVA Bank Data Lab	89
4.8		sion: Industrialised Data Enable Better Alignment	0)
4.0		strialisation Engines	89
		al Experience	91
5.1		ction: Digital Banking	91
5.2		Digital Experience of Banking 4.0 Services	93
	5.2.1	Digital Customer Experience	93

5

xxii Contents

	5.2.2	Deliver Digital Experience in the Front Office	96
	5.2.3	Industrialised Front Office	97
	5.2.4	Deliver Digital Experience in the Back Office	98
	5.2.5	Industrialised Back Office	99
	5.2.6	Deliver Banking 4.0 Services by Integrating	
		the Industrialised Back Office	
		with the Industrialised Front Office	99
5.3	Hyper-	Personalisation is the Foundation for Deliver	
		gital Customer Experience	101
	5.3.1	Personalisation of the Digital Customer	
		Experience Has Matured at Banks	102
	5.3.2	Hyper-personalisation to Deliver Digital	
		Experience	104
5.4	BIAN	Framework to Design Application Modernisation	107
	5.4.1	Case Study: The BIAN Framework	108
	5.4.2	BIAN Framework Helps to Build Consistency	
		and Reusability into Microservices	109
	5.4.3	BIAN Framework Helps in Identifying Wrappers	
		to Modernize Underlying Applications	110
	5.4.4	BIAN Framework to Build Microservices	110
	5.4.5	BIAN as Standard for Designing Microservices	111
	5.4.6	BIAN Service Domain as a Container	111
	5.4.7	Standardised Integration	112
	5.4.8	Standardised SLA and Intelligence	112
	5.4.9	BIAN Delegated Service is a Framework to Build	
		Agility	112
5.5	Moder	nise Applications to Deliver Digital Experience	116
	5.5.1	Three Approaches to Application Modernisation	116
	5.5.2	Aims of Application Modernisation	118
	5.5.3	Scoping an Application Modernisation Program	
		to Deliver an Industrialised Bank	120
5.6	Applic	ation Modernisation Through Microservice-Based	
		ecture	120
	5.6.1	A Microservice Is Small Enough to Enable	
		Agility, It Is Large Enough to Deliver Business	
		functions	121
	5.6.2	The Microservice Has to Be Agile, Flexible,	
		Resilient, and Quickly Adjustable to Customer	
		and Market Realities	121
	5.6.3	Microservice Design Builds Agility	
		into the Banking Business	121
	5.6.4	Core Benefits of Microservice Architecture	122
	5.6.5	Case Study: Microservice Architecture	
		for Regulatory Reporting	122

Contents xxiii

		5.6.6	Applications Fit for the Adoption of Microservice	100
	5.7	Industr	Design	123 125
	3.7	5.7.1	Manage Version Control of Codebase to Re-use	123
		3.7.1	Code Repository	125
		5.7.2	Managing Dependency on Another Library	123
		3.1.2	or Package	125
		5.7.3	Separation of Configuration from Code	125
		5.7.4	Backing Services	123
		5.7.5	Managing the Services Version	126
		5.7.6	Segregate Process from the State	126
		5.7.7	Port Binding	127
		5.7.8	Scale-Out	127
		5.7.9	Disposability	127
		5.7.10	Development Production Parity	127
		5.7.10	Treat Logs as Event Streams	127
		5.7.12	Run Admin Tasks as a One-off	128
	5.8		sion: Deliver Digital Experience by Modernising	120
	5.0		ations	128
6			ion: A Foundational Engine	129
	6.1		action: Cloud adoption—A Foundational Engine	129
		6.1.1	Cloud Adoption Lays Foundation	
			for Industrialisation and Innovation	
			at the Bank	130
		6.1.2	Iterative Cloud Adoption Process Aligns Other	
		G1 1	Engines	131
	6.2		Native Applications (CNAs) Designed to Deliver	400
			ss Outcomes	133
		6.2.1	Cloud-Native Applications Are Modular	133
		6.2.2	Cloud-Native Applications Leverage APIs	400
		600	as an Integration Tool	133
		6.2.3	Containerisation Makes Cloud-Native	400
		604	Applications Horizontally Scalable	133
		6.2.4	Cloud-Native Applications Enable Continuous	104
		605	Deployment	134
		6.2.5	Cloud-Native Applications Are Built-On Reusable	10.4
			Components	134
		6.2.6	Cloud-Native Applications—Designed to Deliver	10.4
		607	Business Outcomes	134
		6.2.7	BIAN Is a Design Template Used to Build	10.
	6.3		Cloud-Native Applications	134
	6.3	Manag	ing Risks in the Cloud	135

xxiv Contents

		6.3.1	Complement the Security and Privacy Posture	105
		6.3.2	Provided by CSPs Continuous and Real-Time Control and Risk Manifesting by the Park and CSP	135
		6.3.3	Monitoring by the Bank and CSP Clearly Defining and Action Items and Contractual Terms	136
	6.4		usion—Cloud Adoption Enables Alignment of Other	145
7	Indu	_	to Manage Changes in the External Environment	147
-	7.1		uction	147
		7.1.1	An Inside-Out View of the Industrialisation of Banks	147
		7.1.2	Outside-In View of the Industrialisation of Banks	148
		7.1.3	Banks not Industrialising Are Likely to Lose Market Share	149
	7.2	Digital	l ID Creates Trust in the Marketplace	149
	7.2	7.2.1	Data Coverage of Digital ID	149
		7.2.2	Digital ID Builds Trusted Marketplaces	150
		7.2.3	Digital ID Delivers Industrialisation	151
		7.2.4	Case Study: Aadhar ID Has Industrialised	101
		,,_,,	Customer Identification and Authentication	151
	7.3	Industr	rialise to Deliver Innovation as BAU	152
		7.3.1	Case Study: PNC Bank, USA Is Industrialising	
			to Embrace Innovation	152
		7.3.2	Case Study: To Embrace Innovation UBS Is	
			Replacing 20% of the Application Portfolio	153
		7.3.3	An Illustrative List of Innovation Vectors	
			on the Industrialisation Foundation	153
		7.3.4	Industrialising the Processing of Petabytes of Data	
			Added Every Year	153
		7.3.5	Blockchain Platform for Cross-Border Commerce,	
			Payment, Banking, Clearing, and Settlement	153
		7.3.6	Integrating Alternative Data Sources to Improve	
			the Predictive Power of Models	154
		7.3.7	ML Models to Enhance the Discriminatory Power	
		7.2.0	of Credit Risk Models	154
		7.3.8	Cloud Technologies Moving to the Mainstream	155
		7.3.9	The Level of Disruption and Innovation May Vary	155
	7.4	Index	Across the Product Portfolio	155
	7.4		rialise to Manage Low-Interest Rate Regimes	156
		7.4.1	Create Scale Through Industrialisation to Service	
			the Cost of Capital Under Low-Interest Rate Regimes	156
			NOSHIDS	1.70

Contents xxv

		7.4.2	Low-Interest Rate and Bank Profitability Regimes	
			with High Disruptable Business Segments	156
		7.4.3	Skill Distribution at Industrialised Banks	156
	7.5	Industr	ialise to Engage Regulators	157
		7.5.1	Technology Is Breaking Down the Barriers	
			to Collaborate with Regulators	157
		7.5.2	The Regulator Has the Dream of Monitoring	
			Every Transaction in an Economy	158
		7.5.3	Regulators Are Digitising: A Vision Statement	
			on Digitisation by Ravi Menon, MAS MD While	
			Establishing the Data Analytics Group (DAG)	158
		7.5.4	Build Agility to Incorporate Regulatory Mandates	
			on the Use of Machine Learning Models in Banking	158
	7.6	Industr	ialise Risk, Finance, and Compliance	159
		7.6.1	Containing Risk, Finance, and Compliance	
			Annual Costs to Within 10–25 Basis Points	
			of Assets	159
		7.6.2	Building a Banking Ontology, Data Dictionaries,	
			and Data Taxonomies to Manage Voluminous	
			Data Through Semantics and Machine Learning	159
		7.6.3	The Financial Industry Business Ontology (FIBO)	159
		7.6.4	The ISO 20022 Data Model with Business	
			Concepts	160
		7.6.5	Managing and Monitoring Changes in Credit	
			Risk: Credit Risk 3.0	160
		7.6.6	Technology and External Data Is Available Now	160
		7.6.7	Monitoring High-Frequency Indicators of Change	
			in Credit Risk	161
		7.6.8	Monitoring Theme-Based Actionables and Alerts	163
		7.6.9	Operational Risk Management 3.0	164
		7.6.10	Elevated Regulatory Mandates to Manage	
			Non-financial Risks Need ORM 3.0	165
		7.6.11	Forward-Looking Automated Risk and Control	
			Assessment	166
		7.6.12	An Illustrative List of Forward-Looking Risk	
			and Control Monitoring	167
		7.6.13	Capability of Monitoring, Preventing,	1.00
		<u> </u>	and Recovering from a Cyber Attack	168
	7.7		sion: Banks Need to Industrialise to Manage	1.00
		and Ex	ploit the Changes in the External Environment	168
8	Platf	orm Ban	ıking Business	169
	8.1		ction	169
		8.1.1	Banking Customers and Partners Have Shifted	
			Their Residence to the Cloud and the Marketplace	169

xxvi Contents

	8.1.2	Industrialisation Enables a Bank to Reach	
		Its Customers and Partners in the Cloud	
		and Marketplace	169
	8.1.3	Platform Banking Helps Participation	
		in the Marketplace	170
	8.1.4	Platform Banking Helps Banks to Become	
		Technology Firms	170
	8.1.5	Case Study: Capital One Has Created a Vision	
		and Implemented a Strategy to Become	
		a Technology Firm	170
	8.1.6	Case Study: DBS Aspires to Be in the League	
		of Big Tech Players like Google and Facebook	171
8.2	Platfor	m Banking Is the New Capital for Banks	171
	8.2.1	Develop a Strategy to Build Platforms	
		and not Implement Projects	171
	8.2.2	Innovative Banking Technology Is Disrupting	
		Marketplaces	172
8.3	Platfor	m Banking Business	173
	8.3.1	Case Study: DBS Distributes Manulife Products	174
	8.3.2	Case Study: Citi Launches IKEA Family Credit	
		Card in Partnership with Ikea	174
	8.3.3	Platform Business Case Studies	175
8.4	Replica	ate the Big Tech Business Model	178
	8.4.1	Innovation Is the New Oxygen for Banks	178
	8.4.2	Innovate to Disrupt Cost and Build Non-interest	
		Revenue Streams	178
	8.4.3	Cost to Income Ratio as an Indicator of How Far	
		the Bank Is from Becoming a Tech Firm	179
	8.4.4	An Illustrative List of Innovations Being Pursued	
		by Banks	179
	8.4.5	Banks Are Discovering Data Is the New Oil	180
	8.4.6	Case Study: Digital Investment Bank of the Future	
		as Data Provider to the Customer	180
	8.4.7	Embedding the Bank in the Customer Journey	181
	8.4.8	Case Study: Innovative and Differentiated Value	
		Propositions for SME and Commercial Customers	181
	8.4.9	Number of Banking Platforms as an Indicator	
		of the Industrialisation of a Bank	182
8.5	APIs A	are the Building Blocks of the Platform Banking	
	Busine	ss Model	183
	8.5.1	A Platform Banking Business Model Runs	
		on a Low Latency Agile Technology	183
	8.5.2	Platform Banking Services Marketplaces Through	
		Published APIs	183

Contents xxviii

	8.5.3	Closed or Internal APIs Industrialise Integration	
		of the Front Office with the Back Office	184
	8.5.4	Open APIs: Banks Provide Four Types of APIs	184
	8.5.5	Typical Open APIs Provided by a Mature Bank's	
		API Hub	184
	8.5.6	Partner APIs Open only to the pre-selected partner	187
	8.5.7	Case Study: Integration with Accounting Software	187
	8.5.8	APIs Open to Authorised Members	
		of a Pre-selected Organisation or Community	187
	8.5.9	APIs Are Made Available by Registering	
		with the Organisation Subject to Certain	
		Conditions	188
	8.5.10	APIs Are Made Available to the Authenticated	
		Parties by Registering with the Organisation	188
	8.5.11	APIs Are 24/7 Invitations to Customers	
		and Partners to Consume the Bank's Services	188
	8.5.12	Regulatory Mandated Open Banking Versus API	
		Banking	189
	8.5.13	Open Banking Is Driven by Regulatory Mandate	189
	8.5.14	Open Banking Coverage Varies Widely Across	
		the Jurisdiction	189
	8.5.15	Open Banking APIs May not Be an Indicator	
		of the Industrialisation of the Bank	190
	8.5.16	API Banking	190
	8.5.17	Mutual Contracts Drive API Banking	190
	8.5.18	Case Study: BBVA Open Platforms Provide API	
		Banking	190
	8.5.19	Open APIs Are not Standardised	191
	8.5.20	Currently, Banks Use Disparate, Bank-Specific	
		Formats, and Definitions for APIs	191
	8.5.21	Case Study: The Working of the API Register	
		of the Monetary Authority of Singapore	191
	8.5.22	Risks in Open API	192
	8.5.23	Regulatory Framework to Manage Data Shared	
		Through APIs	192
	8.5.24	Open API Regulatory Technical Standards	
		for Stronger Customer Authentication and Secured	
		Sharing	193
	8.5.25	Increased Cyber Risk Management Due to API	
		Provision at Banks	193
8.6	Blockel	nain Platforms Are Disrupting the Revenue Model	
		xs	194
	8.6.1	Blockchain is an Emerging Technology	
		for Building Immutability and Trust	194
	8.6.2	Players in the Blockchain Business Model	194

xxviii Contents

		8.6.3	Blockchain Business Model	195
		8.6.4	Case Study: Trade Finance Platforms	
			on Blockchain	195
	8.7	Conclu	sion: Platform Banking for New Revenue Streams	196
9	APIs		Public Persona of an Industrialised Bank	197
	9.1		action:—APIs Industrialise Integration	
			llaboration with Customers and Partners	197
	9.2	Design	ing APIs	198
		9.2.1	API Business Model Drives the API Design	198
		9.2.2	API Monetisation Strategy Drives the API Design	198
		9.2.3	Legacy Application Wrapper APIs	200
		9.2.4	Process APIs	200
		9.2.5	Experience APIs	201
	9.3		ping APIs	201
		9.3.1	Deliver integration with a very large number	
			of endpoints	201
		9.3.2	Agile Integration	201
		9.3.3	Stateless API to make Integration Scalable	201
		9.3.4	Deployment in Seconds	202
		9.3.5	Continuous Integration	202
		9.3.6	Easier Retirement	202
		9.3.7	Minimum Interdependencies	202
		9.3.8	Decentralised API Development Teams	202
		9.3.9	Leveraging Automated Development Tools	203
		9.3.10	Consistent and Standardised API Design	
			and Architecture Framework	203
		9.3.11	Deployment of APIs	203
		9.3.12	Discoverable REST APIs	204
		9.3.13	Agile API Operationalisation	204
	9.4		are the Public Persona of the Bank	204
		9.4.1	APIs Across the Two Banks Are Different	205
		9.4.2	Establish API Gateway to Manage APIs	205
		9.4.3	Functions of an API Gateway	206
		9.4.4	API Gateway Enables Internal Multi-Tenancy	
			and Decentralised Ownership	206
		9.4.5	Federated API Gateway to Build Consistency	
			Across the Business Units of the Bank	207
		9.4.6	Building API Security Blocks	207
	9.5	Publish		208
		9.5.1	Case Study–APIs as a Tool to Deliver Digital	
			Experience at DBS	209
		9.5.2	The Cost of Building APIs is the Major Challenge	
			for Smaller Banks	210

Contents xxix

	9.6		sion: APIs Are the Tool to Disrupt the Business of the Bank	211
10	BIAN	Frame	work to Build Banking AI and Semantic APIs	213
	10.1		action: Developing Banking AI	213
		10.1.1	Existing AI Platforms Are Incapable of Learning	
			Banking Processes	213
		10.1.2	Develop Banking AI to Enhance the Accuracy	
			of AI Systems	214
		10.1.3	BIAN Service Domain Structure is a Template	
			to Build Banking AI	214
	10.2	BIAN A	Artefacts Are Benchmarks for Building Banking AI	215
		10.2.1	Leverage BIAN Artefacts to Build Banking AI	
			Machines	215
		10.2.2	Business Context is the Key to Industrialise Banks	215
		10.2.3	BIAN Metamodels as a Benchmark of Banking	
			Process Hierarchies and Process Aggregation	216
		10.2.4	BIAN Service Domain Represents a Unique	
			and Exclusive Business Context	216
	10.3		022 Dictionaries Are Benchmarks for Banking	
			ion, Processes, and Concepts	217
		10.3.1	BIAN is the Benchmark of Business Definition	217
		10.3.2	BIAN Leverages a Standardised ISO 20022	
			Data Model for Products and Processes	
		1000	and Computation	217
		10.3.3	ISO 20022 Business Object Model is Extensible	218
	10.4	10.3.4		219
	10.4		Service Domain as a Template for Identifying Data	210
			ship of Microservices and APIs	219
		10.4.1	How to Identify Original Data from a Set	221
		10.40	of Electronic Data?	221
		10.4.2	Role of a BIAN Service Domain for the Owned	221
		10.42	Control Record	221
		10.4.3	BIAN Service Domains as a Template to Identify	221
		10.4.4	Duplicate Application Functionality in Banks Template to Identify Duplicate Data in the Bank	221 222
	10.5			222
	10.3	10.5.1	Templates	222
		10.5.1	BIAN Templates Are Applied to the Deployment BIAN Functional Patterns	223
		10.5.2		223
		10.5.3	BIAN Service Operations	224
		10.3.4	of an Offered Service	225
		10.5.5	BIAN Action Terms Are the Foundation to Build	223
		10.5.5	Semantic APIs	225
			Demand At 18	443

xxx Contents

		10.5.6	BIAN Action Terms as a Template	
			for Granularity-Level Decision Making	226
		10.5.7	An Indicative Proportionality Level of API	
			Granularity	226
		10.5.8	BIAN is a Benchmark Semantic API	
			and not a Design Standard	227
		10.5.9	Compliance to BIAN Framework Over Iterative	
			Cycles as a Template for IT Governance	
			and Architecture	228
	10.6	BIAN S	Semantic APIs as Templates	228
		10.6.1	BIAN Template and Attribute Directory	
			for Control Record Help in Creating Semantic APIs	228
		10.6.2	BIAN Framework to Build Wrapped/Repurposed	
			Legacy System APIs	229
		10.6.3	BIAN Framework to Build Distribution	
			and Customer Experience	229
		10.6.4	BIAN Semantic API Examples as a Benchmark	229
		10.6.5	Defining Semantic APIs: Learning from 180+	
			Semantic REST APIs Published by BIAN	230
		10.6.6	The Purpose of Semantics is to Consistently	
			Interpret the Nature or Purpose of the Service	
			Domain	230
	10.7	Conclu	sion: Building Banking AI by Aligning with BIAN	
		Templa	ites and Benchmarks is an Iterative Journey	231
11	Conv	ersation	al Banking	233
	11.1		action to Conversational Banking	233
		11.1.1	Conversational Banking is About Addressing	
			the Limitations of Call Centre and IVR Technology	234
		11.1.2		
		11111	Conversational CoE at the Bank	235
	11.2	Conver	rsational Banking CoE	236
	11.3		rsational Banking Design Principles	238
	11.4		ate of Conversational Technology	243
			Case Study: A Virtual Assistant on Amazon Lex	243
			Case Study: Azure Cognitive Services	245
		11.4.2		
				245
	11.5	11.4.3	Case Study: Kasisto	
	11.5 11.6	11.4.3 Conver	Case Study: Kasistosational Banking Service Use Cases and Intents	245 245
	11.5 11.6	11.4.3 Conver	Case Study: Kasisto	245
		11.4.3 Conver Implem	Case Study: Kasistosational Banking Service Use Cases and Intents	245 245
		11.4.3 Conver Implem	Case Study: Kasisto sational Banking Service Use Cases and Intents nenting Conversational Banking at a Scale Understanding Existing Conversation Services in the Bank	245 245 250
		11.4.3 Conver Implem 11.6.1	Case Study: Kasisto sational Banking Service Use Cases and Intents nenting Conversational Banking at a Scale Understanding Existing Conversation Services in the Bank Segment Audience Conversing with Bank	245245250
		11.4.3 Conver Implem 11.6.1 11.6.2	Case Study: Kasisto sational Banking Service Use Cases and Intents nenting Conversational Banking at a Scale Understanding Existing Conversation Services in the Bank	245 245 250 250 252

Contents xxxi

		11.6.6	Design Conversations	254
		11.6.7	Reimagine Customer Journeys	255
	11.7	The Fu	ture of Conversational Banking	256
		11.7.1	Challenges in Building Conversational Banking	256
		11.7.2	Limitation of Conversational Banking Technology	258
		11.7.3	Designing Conversational Banking User Interfaces	258
		11.7.4	Measuring the Accuracy and Effectiveness	
			of Conversational Banking	259
		11.7.5	Calibrate Customer Intent and Financial	
			Obligation Based on Authentication Strength	260
		11.7.6	Relative Frequency of Conversational Banking	
			Service Use Cases	260
		11.7.7	Success Measures of Conversational Banking	262
	11.8	Conclu	sion: Building Conversational Banking at a Scale	262
12	Rank	ing AI a	s a Service	265
_	12.1		ction: Banking AI Takes Forward	200
	12.1		ustrialisation Agenda	265
		12.1.1	Banking AI as a Service is a Basic Building Block	
			in the Industrialisation Agenda	266
	12.2	Establis	sh Banking AI CoE	266
	12.3		sh Banking AI Organisation	267
		12.3.1	Banks Are Appointing Chief AI Officers	267
		12.3.2	Case Study: Chief AI Officer at JPMC	268
		12.3.3	Availability of AI Skills is a Major Area	
			of Constraint	268
		12.3.4	Case Study: Augmenting AI Capabilities Through	
			the Acquisition of an AI Consulting Firm	268
		12.3.5	Case Study: Augmenting AI Capabilities Through	
			Partnerships with Academia	269
		12.3.6	Case Study: Augmenting AI Capabilities Through	
			Investment in AI Startups	269
		12.3.7	Augmenting the AI Team Through a Training	
			Partnership with Academia	270
		12.3.8	Banks Are Collaborating with Cloud Service	
			Providers on AI Initiatives	270
		12.3.9	Case Study: HSBC Partners with Element AI	271
	12.4		g AI as a Service (BAIaaS) on a Cloud Data AI	
			m	271
		12.4.1	The Development of AI as a Service (AiaaS)	271
		10.40	for Banks Will Be a Very Long Journey	271
		12.4.2	General Purpose AI Platform Capabilities Have	271
		12.4.2	Matured in the Past Three Years or so	271
		12.4.3	Case Study: GCP AI Platform—A Platform to Provide AI as a Service	272
			to Flovide At as a Service	- 212

xxxii Contents

		12.4.4	Case Study: General Purpose AI Platform	273
		12.4.5	AI Services on a General Purpose AI Platform	273
		12.4.6	Managing Cloud AI Platforms	274
		12.4.7	Banks Need to Develop Narrow AI Very Specific	
			to the Banking Process	276
	12.5	Build a	Semantic Technology Foundation for Banking AI	277
		12.5.1	ISO 20022 Has Published a Banking Semantic	
			Dictionary	277
		12.5.2	ISO 20022 Dictionary for Banks is	
			at Three-Level—Semantic, Logical and Physical	278
		12.5.3	Further, Augment ISO 20022	279
		12.5.4	√ 11	
			to Building Semantic Technology	279
	12.6		g Banking Knowledge Organisation	
			presentation	288
		12.6.1	Establish Knowledge Architect and Knowledge	
			Engineer	289
	12.7		tudy: Fintech AI Use Cases	290
			Robo-Advice	291
			Customer Complaints	291
			Credit Scoring	292
	12.8		sion: Banking AI as a Service is not a Technology	
		Project		293
13	Finte	ch: The	Innovation Benchmark	295
	13.1		1.0: Wakeup Call for the Banks (2014–2018)	295
		13.1.1	Regulators Were in a Dilemma	295
	13.2	Fintech	2.0: Challenger to the Banks (2016–2020)	296
		13.2.1	Regulatory Sandbox: A Landmark Initiative	
			Across the Jurisdiction	296
		13.2.2	Case Study: RBI Report of the Working Group	
			on Fintech and Digital Banking	297
		13.2.3	Digital Banks as an Extension of Fintechs	
			to Regulated Banks	297
	13.3	Fintech	3.0: Partnering with Banks (2018–2022 Onwards)	297
		13.3.1	Fintechs as Technology Partners of Regulated	
			Entities	298
		13.3.2	Most of the Financial Services Firms Are Likely	
			to Be a White Label in Their Offerings of Fintech	
			Services and the Services of Other Financial	
			Services Firms	298
		13.3.3	Provision of Business Outcome for Partner Banks	
			Is Emerging as a Business Model for Technology	
			Fintechs	299
		13.3.4	Fintechs Are Innovation Partners for Banks	299

Contents xxxiii

	13.3.5	Disruptive Marketplaces Are Emerging as the Next	
		Bed of Innovation	299
	13.3.6	Banks Have a Shortage of AI Skills: AI Fintechs	
		Are Likely to Get Better Traction	299
	13.3.7	Case Study: Fintech Upgrading to Become	
		a Financial Services Firm	300
13.4	Fintech	4.0: Level Playing with the Industrialised Banks	
	(2021-))	301
	13.4.1	Fintechs Cannot Replace Banks, but They Will	
		Make Banking Better	301
	13.4.2	Developing AI/ML Models by Standalone	
		Fintechs Will Be Challenging Going Forward	301
	13.4.3	Industrialised Banks Are Becoming Equipped	
		to Compete with Fintechs Even at a Technology	
		Level	301
	13.4.4	Regulators Are Establishing a Level Playing Field	
		Between Traditional Financial Services Firms	
		and Fintechs	302
	13.4.5	Level Playing Regulation Case Study: Fintech	
		Balance Sheet Lending	303
	13.4.6	Level Playing Regulation Case Study:	
		Crowdfunding Platform	303
	13.4.7	Case Study: Emerging Regulatory Regimes	
		in China for Fintechs in a Financial Service	
		Business	303
	13.4.8	Case Study: In India Digital Lending Is Being	
		Brought Within the Ambit of Banking Regulation	304
13.5		sion: An Industrialised Bank Is Converging	
	with Fi	ntech	304
Further F	Reading S	Sources on the Web	305