Introductory Econometrics for Finance

FOURTH EDITION

CHRIS BROOKS

The ICMA Centre, Henley Business School, University of Reading

Contents in Brief

List of Figures

List of Tab	oles
List of Box	res
List of Screenshots	
Preface to the Fourth Edition	
Acknowledgements	
Outline of the Remainder of this Book	
Chapter 1	Introduction and Mathematical Foundations
Chapter 2	Statistical Foundations and Dealing with Data
Chapter 3	A Brief Overview of the Classical Linear Regression Model
Chapter 4	Further Development and Analysis of the Classical Linear Regression Model
Chapter 5	Classical Linear Regression Model Assumptions and Diagnostic Tests
Chapter 6	Univariate Time-Series Modelling and Forecasting
C hapter 7	Multivariate Models
Chapter 8	Modelling Long-Run Relationships in Finance
Chapter 9	Modelling Volatility and Correlation

Chapter Switching and State Space Models

10

Chapter Panel Data

11

Chapter Limited Dependent Variable Models

12

Chapter Simulation Methods

13

Chapter Additional Econometric Techniques for Financial

14 Research

Chapter Conducting Empirical Research or Doing a Project or

Dissertation in Finance

Appendix Sources of Data Used in This Book and the Accompanying

1 Software Manuals

Appendix Tables of Statistical Distributions

2

Glossary

References

Index

Detailed Contents

List of Figures
List of Tables
List of Boxes
List of Screenshots
Preface to the Fourth Edition
Acknowledgements
Outline of the Remainder of this Book

Chapter 1 Introduction and Mathematical Foundations

- 1.1 What is Econometrics?
- 1.2 Is Financial Econometrics Different?
- 1.3 Steps Involved in Formulating an Econometric Model
- 1.4 Points to Consider When Reading Articles
- 1.5 Functions
- 1.6 Differential Calculus
- 1.7 Matrices

Chapter 2 Statistical Foundations and Dealing with Data

- 2.1 Probability and Probability Distributions
- 2.2 A Note on Bayesian versus Classical Statistics
- 2.3 Descriptive Statistics
- 2.4 Types of Data and Data Aggregation
- 2.5 Arithmetic and Geometric Series
- 2.6 Future Values and Present Values
- 2.7 Returns in Financial Modelling
- 2.8 Portfolio Theory Using Matrix Algebra

Chapter 3 A Brief Overview of the Classical Linear Regression Model

3.1 What is a Regression Model?

- 3.2 Regression versus Correlation
- 3.3 Simple Regression
- 3.4 Some Further Terminology
- 3.5 The Assumptions Underlying the Model
- 3.6 Properties of the OLS Estimator
- 3.7 Precision and Standard Errors
- 3.8 An Introduction to Statistical Inference
- 3.9 A Special Type of Hypothesis Test
- 3.10 An Example of a Simple *t*-test of a Theory
- 3.11 Can UK Unit Trust Managers Beat the Market?
- 3.12 The Overreaction Hypothesis
- 3.13 The Exact Significance Level

Appendix 3.1 Mathematical Derivations of CLRM Results

Chapter 4 Further Development and Analysis of the Classical Linear Regression Model

- 4.1 Generalising the Simple Model
- 4.2 The Constant Term
- 4.3 How are the Parameters Calculated?
- 4.4 Testing Multiple Hypotheses: The *F*-test
- 4.5 Data Mining and the True Size of the Test
- 4.6 Qualitative Variables
- 4.7 Goodness of Fit Statistics
- 4.8 Hedonic Pricing Models
- 4.9 Tests of Non-Nested Hypotheses
- 4.10 Quantile Regression
- Appendix 4.1 Mathematical Derivations of CLRM Results

Appendix 4.2 A Brief Introduction to Factor Models and Principal Components Analysis

Chapter 5 Classical Linear Regression Model Assumptions and Diagnostic Tests

- 5.1 Introduction
- 5.2 Statistical Distributions for Diagnostic Tests
- 5.3 Assumption (1): $E(u_t) = 0$
- 5.4 Assumption (2): $var(u_t) = \sigma^2 < \infty$

- 5.5 Assumption (3): $cov(u_i, u_i) = 0$ for $i \neq j$
- 5.6 Assumption (4): The x_t are Non-Stochastic
- 5.7 Assumption (5): The Disturbances are Normally Distributed
- 5.8 Multicollinearity
- 5.9 Adopting the Wrong Functional Form
- 5.10 Omission of an Important Variable
- 5.11 Inclusion of an Irrelevant Variable
- 5.12 Parameter Stability Tests
- 5.13 Measurement Errors
- 5.14 A Strategy for Constructing Econometric Models
- 5.15 Determinants of Sovereign Credit Ratings

Chapter 6 Univariate Time-Series Modelling and Forecasting

- 6.1 Introduction
- 6.2 Some Notation and Concepts
- 6.3 Moving Average Processes
- 6.4 Autoregressive Processes
- 6.5 The Partial Autocorrelation Function
- 6.6 ARMA Processes
- 6.7 Building ARMA Models: The Box–Jenkins Approach
- 6.8 Examples of Time-Series Modelling in Finance
- 6.9 Exponential Smoothing
- 6.10 Forecasting in Econometrics

Chapter 7 Multivariate Models

- 7.1 Motivations
- 7.2 Simultaneous Equations Bias
- 7.3 So how can Simultaneous Equations Models be Validly Estimated?
- 7.4 Can the Original Coefficients be Retrieved from the π *s*?
- 7.5 Simultaneous Equations in Finance
- 7.6 A Definition of Exogeneity
- 7.7 Triangular Systems
- 7.8 Estimation Procedures for Simultaneous Equations Systems
- 7.9 An Application of a Simultaneous Equations Approach

- 7.10 Vector Autoregressive Models
- 7.11 Does the VAR Include Contemporaneous Terms?
- 7.12 Block Significance and Causality Tests
- 7.13 VARs with Exogenous Variables
- 7.14 Impulse Responses and Variance Decompositions
- 7.15 VAR Model Example: The Interaction Between Property Returns and the Macroeconomy
- 7.16 A Couple of Final Points on VARs

Chapter 8 Modelling Long-Run Relationships in Finance

- 8.1 Stationarity and Unit Root Testing
- 8.2 Tests for Unit Roots in the Presence of Structural Breaks
- 8.3 Cointegration
- 8.4 Equilibrium Correction or Error Correction Models
- 8.5 Testing for Cointegration in Regression: A Residuals-Based Approach
- 8.6 Methods of Parameter Estimation in Cointegrated Systems
- 8.7 Lead–Lag and Long-Term Relationships Between Spot and Futures Markets
- 8.8 Testing for and Estimating Cointegration in Systems
- 8.9 Purchasing Power Parity
- 8.10 Cointegration Between International Bond Markets
- 8.11 Testing the Expectations Hypothesis of the Term Structure of Interest Rates

Chapter 9 Modelling Volatility and Correlation

- 9.1 Motivations: An Excursion into Non-Linearity Land
- 9.2 Models for Volatility
- 9.3 Historical Volatility
- 9.4 Implied Volatility Models
- 9.5 Exponentially Weighted Moving Average Models
- 9.6 Autoregressive Volatility Models
- 9.7 Autoregressive Conditionally Heteroscedastic (ARCH) Models
- 9.8 Generalised ARCH (GARCH) Models
- 9.9 Estimation of ARCH/GARCH Models
- 9.10 Extensions to the Basic GARCH Model

- 9.11 Asymmetric GARCH Models
- 9.12 The GJR model
- 9.13 The EGARCH Model
- 9.14 Tests for Asymmetries in Volatility
- 9.15 GARCH-in-Mean
- 9.16 Uses of GARCH-Type Models
- 9.17 Testing Non-Linear Restrictions
- 9.18 Volatility Forecasting: Some Examples and Results
- 9.19 Stochastic Volatility Models Revisited
- 9.20 Forecasting Covariances and Correlations
- 9.21 Covariance Modelling and Forecasting in Finance
- 9.22 Simple Covariance Models
- 9.23 Multivariate GARCH Models
- 9.24 Direct Correlation Models
- 9.25 Extensions to the Basic Multivariate GARCH Model
- 9.26 A Multivariate GARCH Model for the CAPM
- 9.27 Estimating a Time-Varying Hedge Ratio
- 9.28 Multivariate Stochastic Volatility Models

Appendix 9.1 Parameter Estimation Using Maximum Likelihood

Chapter 10 Switching and State Space Models

- 10.1 Motivations
- 10.2 Seasonalities in Financial Markets
- 10.3 Modelling Seasonality in Financial Data
- 10.4 Estimating Simple Piecewise Linear Functions
- 10.5 Markov Switching Models
- 10.6 A Markov Switching Model for the Real Exchange Rate
- 10.7 A Markov Switching Model for the Gilt–Equity Yield Ratio
- 10.8 Threshold Autoregressive Models
- 10.9 Estimation of Threshold Autoregressive Models
- 10.10 Specification Tests
- 10.11 A SETAR Model for the French franc–German mark Exchange Rate
- 10.12 Threshold Models for FTSE Spot and Futures
- 10.13 Regime Switching Models and Forecasting
- 10.14 State Space Models and the Kalman Filter

Chapter 11 Panel Data

- 11.1 Introduction: What Are Panel Techniques?
- 11.2 What Panel Techniques Are Available?
- 11.3 The Fixed Effects Model
- 11.4 Time-Fixed Effects Models
- 11.5 Investigating Banking Competition
- 11.6 The Random Effects Model
- 11.7 Panel Data Application to Credit Stability of Banks
- 11.8 Panel Unit Root and Cointegration Tests
- 11.9 Further Feading

Chapter 12 Limited Dependent Variable Models

- 12.1 Introduction and Motivation
- 12.2 The Linear Probability Model
- 12.3 The Logit Model
- 12.4 Using a Logit to Test the Pecking Order Hypothesis
- 12.5 The Probit Model
- 12.6 Choosing Between the Logit and Probit Models
- 12.7 Estimation of Limited Dependent Variable Models
- 12.8 Goodness of Fit Measures for Linear Dependent Variable Models
- 12.9 Multinomial Linear Dependent Variables
- 12.10 The Pecking Order Hypothesis Revisited
- 12.11 Ordered Response Linear Dependent Variables Models
- 12.12 Are Unsolicited Credit Ratings Biased Downwards? An Ordered Probit Analysis
- 12.13 Censored and Truncated Dependent Variables
- Appendix 12.1 The Maximum Likelihood Estimator for Logit and Probit Models

Chapter 13 Simulation Methods

- 13.1 Motivations
- 13.2 Monte Carlo Simulations
- 13.3 Variance Reduction Techniques
- 13.4 Bootstrapping
- 13.5 Random Number Generation
- 13.6 Disadvantages of the Simulation Approach

- 13.7 An Example of Monte Carlo Simulation
- 13.8 An Example of how to Simulate the Price of a Financial Option
- 13.9 An Example of Bootstrapping to Calculate Capital Risk Requirements

Chapter 14 Additional Econometric Techniques for Financial Research

- 14.1 Event Studies
- 14.2 Tests of the CAPM and the Fama–French Methodology
- 14.3 Extreme Value Theory
- 14.4 The Generalised Method of Moments

Chapter 15 Conducting Empirical Research or Doing a Project or Dissertation in Finance

- 15.1 What is an Empirical Research Project?
- 15.2 Selecting the Topic
- 15.3 Sponsored or Independent Research?
- 15.4 The Research Proposal
- 15.5 Working Papers and Literature on the Internet
- 15.6 Getting the Data
- 15.7 Choice of Computer Software
- 15.8 Methodology
- 15.9 How Might the Finished Project Look?
- 15.10 Presentational Issues

Appendix 1 Sources of Data Used in This Book and the Accompanying Software Manuals

Appendix 2 Tables of Statistical Distributions

Glossary References Index