Market Risk Analysis Volume II

Practical Financial Econometrics

Carol Alexander

Contents _____

List	of Figu	res		xiii
List	of Tabl	es		xvii
List	of Exar	nples		XX
Fore	word			xxii
Pref	ace to V	olume I	I	xxvi
II.1	Factor	r Models		1
	II.1.1	Introduc	ction	1
	II.1.2	Single F	Factor Models	2 2
		II.1.2.1	Single Index Model	
			Estimating Portfolio Characteristics using OLS	4
		II.1.2.3	Estimating Portfolio Risk using EWMA	6
		II.1.2.4	Relationship between Beta, Correlation and Relative	
			Volatility	8
			Risk Decomposition in a Single Factor Model	10
	II.1.3		actor Models	11
			Multi-factor Models of Asset or Portfolio Returns	11
			Style Attribution Analysis	13
			General Formulation of Multi-factor Model	16
			Multi-factor Models of International Portfolios	17
	II.1.4		udy: Estimation of Fundamental Factor Models	21
			Estimating Systematic Risk for a Portfolio of US Stocks	22
		II.1.4.2	•	
			Models	23
		II.1.4.3	Estimating Fundamental Factor Models by Orthogonal	
			Regression	25
	11.1.5	•	s of Barra Model	27
			Risk Indices, Descriptors and Fundamental Betas	28
			Model Specification and Risk Decomposition	30
	11.1.6	•	g Error and Active Risk	31
			Ex Post versus Ex Ante Measurement of Risk and Return	32
			Definition of Active Returns	32
			Definition of Active Weights	33
		II 1 6 4	Ex Post Tracking Error	33

	~
V111	Contents

		II.1.6.5	Ex Post Mean-Adjusted Tracking Error	36	
		II.1.6.6	Ex Ante Tracking Error	39	
			Ex Ante Mean-Adjusted Tracking Error	40	
		II.1.6.8	Clarification of the Definition of Active Risk	42	
	II.1.7	Summai	ry and Conclusions	44	
II.2			ponent Analysis	47	
	II.2.1	Introduc	ction	47	
	II.2.2		of Principal Component Analysis	48	
			Definition of Principal Components	49	
			Principal Component Representation	49	
			Frequently Asked Questions	50	
	II.2.3		udy: PCA of UK Government Yield Curves	53	
			Properties of UK Interest Rates	53	
			Volatility and Correlation of UK Spot Rates	55	
			PCA on UK Spot Rates Correlation Matrix	56	
			Principal Component Representation	58	
			PCA on UK Short Spot Rates Covariance Matrix	60	
	II.2.4		tructure Factor Models	61	
			Interest Rate Sensitive Portfolios	62	
			Factor Models for Currency Forward Positions	66	
			Factor Models for Commodity Futures Portfolios	70	
			Application to Portfolio Immunization	71	
			Application to Asset–Liability Management	72	
			Application to Portfolio Risk Measurement	73 76	
	11 2 5		Multiple Curve Factor Models PCA Factor Models	80	
	11.2.3		Model Structure	80	
			Specific Risks and Dimension Reduction	81	
			Case Study: PCA Factor Model for DJIA	01	
		11.2.3.3	Portfolios	82	
	II.2.6	Summai	ry and Conclusions	86	
11 3	Classical Models of Volatility and Correlation				
11.0		3.1 Introduction			
			e and Volatility	89 90	
	11.0.2		Volatility and the Square-Root-of-Time Rule	90	
			Constant Volatility Assumption	92	
			Volatility when Returns are Autocorrelated	92	
			Remarks about Volatility	93	
	II.3.3		nce and Correlation	94	
		II.3.3.1	Definition of Covariance and Correlation	94	
		II.3.3.2	Correlation Pitfalls	95	
		II.3.3.3	Covariance Matrices	96	
		II.3.3.4	Scaling Covariance Matrices	97	
	II.3.4		Weighted Averages	98	
			Unconditional Variance and Volatility	99	
		II.3.4.2	Unconditional Covariance and Correlation	102	
		II.3.4.3	Forecasting with Equally Weighted Averages	103	

			Contents	ix
	II.3.5	Precisio	n of Equally Weighted Estimates	104
			Confidence Intervals for Variance and Volatility	104
			Standard Error of Variance Estimator	106
			Standard Error of Volatility Estimator	107
			Standard Error of Correlation Estimator	109
	II.3.6		udy: Volatility and Correlation of US Treasuries	109
	11.0.0		Choosing the Data	110
			Our Data	111
			Effect of Sample Period	112
			How to Calculate Changes in Interest Rates	113
	II.3.7		Weighted Moving Averages	115
	11.5.7		Effect of Volatility Clusters	115
			Pitfalls of the Equally Weighted Moving Average Method	117
			Three Ways to Forecast Long Term Volatility	118
	II.3.8		ntially Weighted Moving Averages	120
	11.5.0	_	Statistical Methodology	120
			Interpretation of Lambda	121
			Properties of EWMA Estimators	121
			Forecasting with EWMA	123
			Standard Errors for EWMA Forecasts	123
			RiskMetrics TM Methodology	124
	II 2 0	II.3.8.7	E	128 129
	II.3.9	Summa	ry and Conclusions	129
II.4	Introd	luction to	o GARCH Models	131
	II.4.1	Introduc	ction	131
	II.4.2		mmetric Normal GARCH Model	135
			Model Specification	135
			Parameter Estimation	137
		II.4.2.3	Volatility Estimates	141
		II.4.2.4	GARCH Volatility Forecasts	142
		II.4.2.5	Imposing Long Term Volatility	144
		II.4.2.6	Comparison of GARCH and EWMA Volatility Models	147
	II.4.3	Asymm	etric GARCH Models	147
		II.4.3.1	A-GARCH	148
		II.4.3.2	GJR-GARCH	150
		II.4.3.3	Exponential GARCH	151
		II.4.3.4	Analytic E-GARCH Volatility Term Structure Forecasts	154
		II.4.3.5	Volatility Feedback	156
	II.4.4	Non-No	ormal GARCH Models	157
		II.4.4.1	Student t GARCH Models	157
		II.4.4.2	Case Study: Comparison of GARCH Models for the	
			FTSE 100	159
		II.4.4.3	Normal Mixture GARCH Models	161
			Markov Switching GARCH	163
	II.4.5		I Covariance Matrices	164
			Estimation of Multivariate GARCH Models	165
		II.4.5.2		166
			Factor GARCH	169

	II.4.6	Orthogo	onal GARCH	171
		_	Model Specification	171
		II.4.6.2	Case Study: A Comparison of RiskMetrics and O-GARCH	173
			Splicing Methods for Constructing Large Covariance	
			Matrices	179
	II.4.7	Monte (Carlo Simulation with GARCH Models	180
		II.4.7.1	Simulation with Volatility Clustering	180
		II.4.7.2	Simulation with Volatility Clustering Regimes	183
		II.4.7.3	Simulation with Correlation Clustering	185
	II.4.8		tions of GARCH Models	188
			Option Pricing with GARCH Diffusions	188
			Pricing Path-Dependent European Options	189
		II.4.8.3	Value-at-Risk Measurement	192
		II.4.8.4	Estimation of Time Varying Sensitivities	193
		II.4.8.5	Portfolio Optimization	195
	II.4.9	Summai	ry and Conclusions	197
II.5	Time	Series M	odels and Cointegration	201
		Introduc	e	201
			ry Processes	202
			Time Series Models	203
			Inversion and the Lag Operator	206
			Response to Shocks	206
			Estimation	208
			Prediction	210
			Multivariate Models for Stationary Processes	211
	II.5.3		tic Trends	212
		II.5.3.1	Random Walks and Efficient Markets	212
		II.5.3.2	Integrated Processes and Stochastic Trends	213
			Deterministic Trends	214
		II.5.3.4	Unit Root Tests	215
		II.5.3.5	Unit Roots in Asset Prices	218
			Unit Roots in Interest Rates, Credit Spreads and Implied	
			Volatility	220
		II.5.3.7	Reconciliation of Time Series and Continuous Time Models	223
			Unit Roots in Commodity Prices	224
	II.5.4		erm Equilibrium	225
		II.5.4.1	Cointegration and Correlation Compared	225
		II.5.4.2	Common Stochastic Trends	227
		II.5.4.3		228
			Evidence of Cointegration in Financial Markets	229
		II.5.4.5		231
		II.5.4.6		239
		II.5.4.7		
			Jones Index	240
	II.5.5	Modelli	ng Short Term Dynamics	243
			Error Correction Models	2/3

			Con	tents	xi
		II.5.5.2	Granger Causality		246
			Case Study: Pairs Trading Volatility Index Futures		247
	II.5.6		ry and Conclusions		250
II.6	Introd	luction to	o Copulas		253
	II.6.1	Introduc	ction		253
	II.6.2	Concord	lance Metrics		255
		II.6.2.1	Concordance		255
		II.6.2.2	Rank Correlations		256
	II.6.3	Copulas	and Associated Theoretical Concepts		258
		II.6.3.1	Simulation of a Single Random Variable		258
		II.6.3.2	Definition of a Copula		259
		II.6.3.3	Conditional Copula Distributions and their Quantile Cu	rves	263
			Tail Dependence		264
		II.6.3.5	Bounds for Dependence		265
	II.6.4	Example	es of Copulas		266
		II.6.4.1	Normal or Gaussian Copulas		266
			Student t Copulas		268
		II.6.4.3	Normal Mixture Copulas		269
			Archimedean Copulas		271
	II.6.5	Condition	onal Copula Distributions and Quantile Curves		273
			Normal or Gaussian Copulas		273
			Student t Copulas		274
			Normal Mixture Copulas		275
			Archimedean Copulas		275
			Examples		276
	II.6.6		ing Copulas		279
			Correspondence between Copulas and Rank Correlation	IS	280
			Maximum Likelihood Estimation		281
			How to Choose the Best Copula		283
	II.6.7		ion with Copulas		285
			Using Conditional Copulas for Simulation		285
			Simulation from Elliptical Copulas		286
			Simulation with Normal and Student t Copulas		287
	TT 60	II.6.7.4	1		290
	II.6.8		Risk Applications		290
		II.6.8.1	Value-at-Risk Estimation		291
			Aggregation and Portfolio Diversification		292
	TT 6.0	II.6.8.3	Using Copulas for Portfolio Optimization		295
	II.6.9	Summai	ry and Conclusions		298
II.7			nometric Models		301
	II.7.1	Introduc			301
	II.7.2		e Regression		303
		II.7.2.1	Review of Standard Regression		304
		II.7.2.2	What is Quantile Regression?		305
		II.7.2.3	Parameter Estimation in Quantile Regression		305

		II.7.2.4	Inference on Linear Quantile Regressions	307	
		II.7.2.5	Using Copulas for Non-linear Quantile Regression	307	
	II.7.3	Case Stu	udies on Quantile Regression	309	
		II.7.3.1	Case Study 1: Quantile Regression of Vftse on FTSE 100		
			Index	309	
		II.7.3.2	Case Study 2: Hedging with Copula Quantile Regression	314	
	II.7.4	Other N	on-Linear Regression Models	319	
		II.7.4.1	Non-linear Least Squares	319	
		II.7.4.2	Discrete Choice Models	321	
	II.7.5	Markov	Switching Models	325	
			Testing for Structural Breaks	325	
		II.7.5.2	Model Specification	327	
		II.7.5.3	Financial Applications and Software	329	
	II.7.6	Modelli	ng Ultra High Frequency Data	330	
		II.7.6.1	Data Sources and Filtering	330	
			Modelling the Time between Trades	332	
			Forecasting Volatility	334	
	II.7.7	Summar	ry and Conclusions	337	
II.8	Foreca	orecasting and Model Evaluation			
		Introduc		341	
	II.8.2	Returns	Models	342	
		II.8.2.1	Goodness of Fit	343	
		II.8.2.2	Forecasting	347	
		II.8.2.3	Simulating Critical Values for Test Statistics	348	
		II.8.2.4	Specification Tests for Regime Switching Models	350	
	II.8.3	Volatilit	ty Models	350	
		II.8.3.1	Goodness of Fit of GARCH Models	351	
		II.8.3.2	Forecasting with GARCH Volatility Models	352	
		II.8.3.3	Moving Average Models	354	
	II.8.4	Forecast	ting the Tails of a Distribution	356	
		II.8.4.1	Confidence Intervals for Quantiles	356	
			Coverage Tests	357	
			Application of Coverage Tests to GARCH Models	360	
			Forecasting Conditional Correlations	361	
	II.8.5	-	onal Evaluation	363	
		II.8.5.1	E E	363	
		II.8.5.2	Alpha Models	365	
		II.8.5.3	Portfolio Optimization	366	
		II.8.5.4	Hedging with Futures	366	
		II.8.5.5	Value-at-Risk Measurement	367	
		II.8.5.6	Trading Implied Volatility	370	
		II.8.5.7	Trading Realized Volatility	372	
	TT C =	II.8.5.8	Pricing and Hedging Options	373	
	II.8.6	Summar	ry and Conclusions	375	
Refe	rences			377	
Inde	v			387	