Green Food Processing Techniques

Preservation, Transformation and Extraction

Edited by

Farid Chemat

GREEN Extraction Team, INRA, UMR408, Avignon University, Avignon, France

Eugene Vorobiev

Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, Centre de Recherches de Royallieu, Compiègne Cedex, France

Contents

	of Co graphy	ontributors v	xv xxi		
Pre			xxiii		
1	Gree	en food processing: concepts, strategies, and tools	1		
	Fran	cisco J. Barba, Elena Roselló-Soto, Krystian Marszałek,			
	Dani	ijela Bursać Kovačević, Anet Režek Jambrak, Jose M. Lorenzo,			
	Faria	d Chemat and Predrag Putnik			
	1.1	Introduction	1		
	1.2	High hydrostatic pressure	2		
	1.3	Supercritical carbon dioxide	3		
	1.4	Electrotechnologies	5		
	1.5	Laser ablation and radiofrequency	7		
	1.6	Ultrasound	7		
	1.7	Microwaves	8		
	1.8	Nanotechnology	9		
	1.9	Solar energy	10		
	1.10	Challenges with experiential methodology, theory,			
		and statistical calculations	11		
	1.11	Strategy, challenges, and perspectives	12		
	Ackr	nowledgments	13		
	Refe	rences	13		
	Furth	ner reading	21		
2		asound technology for food processing, preservation,			
		extraction	23		
		heina Khadhraoui, Anne-Sylvie Fabiano-Tixier, Philippe Robinet,			
	Rémi Imbert and Farid Chemat				
	2.1	Ultrasound: principle and influencing factors	23		
		2.1.1 Principle	23		
		2.1.2 Influencing factors	27		
	2.2	Ultrasound techniques	34		
		2.2.1 Ultrasound techniques at laboratory scale	34		
		2.2.2 Ultrasound techniques at industrial scale	36		
	2.3	Applications	37		
		2.3.1 Ultrasound in transformation and processing of food	37		

		2.3.2	Applications of ultrasound in preservation of food	40
		2.3.3	Applications of ultrasound in extraction	42
	2.4		rehension of ultrasound-induced mechanisms	42
	2.5	Future	trends	51
	Refe	erences		51
	Furt	her read	ing	56
3			al fluid processing and extraction of food	57
			lanega, Grazielle Náthia-Neves, Priscila C. Veggi	
			ela A. Meireles	
		Introdu		57
	3.2		ble, procedures, and influencing factors	58
			Principle	58
			Procedures	59
			Influencing factors	62
	3.3		ation in extraction of food ingredients	64
			Extraction of essential oil	65
			Extraction of carotenoids	66
			Extraction of spices	67
	~ (Extraction of anthocyanins	68
	3.4		ations in transformation and processing of food	68
			Particle formation	68
			Extrusion	69
			Fractionation	69
			ations in food preservation	70
			nmental impact	71
			ing and its application in industry	73
		Future		77
		Conclu	1810n	78
	Refe	erences		78
4			static pressure processing of foods	87
			lou, Eleni Gogou and Petros Taoukis	
	4.1			87
	4.2		mental principles of high pressure process	88
	4.3		fect of high pressure on food quality and safety attributes	91
		4.3.1	The effect of high pressure on microorganisms	91
		4.3.2	The effect of high pressure on enzymes	97
		4.3.3	The effect of high pressure on nutritional characteristics	
			of foods	102
		4.3.4	The effect of high pressure on the shelf life	
			of food products	108
	4.4		pressure technology in combination with other	
			ses and hurdles	110
		4.4.1	High pressure-assisted extraction	110

		4.4.2 Application of high pressure in combination	
		with antimicrobials and plant extracts	112
		4.4.3 Application of high pressure in combination	
		with osmotic dehydration	112
		4.4.4 Application of high pressure in combination	
		with enzyme pretreatment	112
	4.5	• •	113
	4.6	High pressure process design and evaluation	114
		4.6.1 High pressure processing impact evaluation	118
		4.6.2 Development of pressure-temperature-time indicators	119
	4.7	Economical and environmental aspects of high pressure	
		application in the food industry	122
		4.7.1 Economical aspects of high pressure	122
		4.7.2 Environmental aspects of high pressure	123
	Refe	erences	124
5	Hig	h-pressure homogenization in food processing	139
	Don	ninique Chevalier-Lucia and Laetitia Picart-Palmade	
	5.1	Introduction	139
	5.2	Dynamic high pressure principle and equipment	141
	5.3	High pressure homogenization processing as greener	
		extraction processing	144
	5.4	Dynamic high pressure processing as greener submicron	
		emulsion processing	146
	5.5	Dynamic high pressure processing as greener preservation	
		processing	149
		Conclusion	152
	Refe	erences	153
6	Ohr	nic heating for preservation, transformation, and extraction	159
	Rui	M. Rodrigues, Zlatina Genisheva, Cristina M.R. Rocha,	
		é A. Teixeira, António A. Vicente and Ricardo N. Pereira	
	6.1	Introduction	159
		6.1.1 Fundamentals of ohmic heating	159
		6.1.2 <i>Present status</i> : commercial and novel applications	162
	6.2		164
		6.2.1 Thermal processing of foods	164
		6.2.2 Nonthermal effects: cellular matrices, microorganisms,	
		and enzymes	166
		6.2.3 Transformation of macromolecules	173
	6.3	Extraction of biocompounds	175
		6.3.1 Electroheating	176
		6.3.2 Nonthermal effects in extraction processes	178
		6.3.3 Combining ohmic heating with other	
		extraction techniques	179

	6.4	Future	e perspectives	182		
		nowled		182		
		erences	-	183		
7	Pressure hot water processing of food and natural products					
	Merichel Plaza, María Castro-Puyana and María Luisa Marina					
	7.1	Introd	uction	193		
	7.2	Funda	mentals of pressurized hot water extraction	194		
	7.3	Instrumentation				
	7.4 Applications in the extraction of food ingredients from					
		foods	and natural products	199		
	7.5	Hydro	plysis reactions during pressurized hot water extraction	208		
	7.6	Food	quality and safety using pressurized hot water extraction	209		
	7.7	Enviro	onmental impact	213		
	7.8	Concl	usions and future trends	214		
	Ack	nowled	gments	215		
	Refe	erences		215		
8	Inst	ant con	trolled pressure drop as new intensification ways			
	for [•]	vegetal	oil extraction	221		
	Cherif Jablaoui, Amal Zeaiter, Kamel Bouallegue, Bassam Jemoussi,					
	Colette Besombes, Tamara Allaf and Karim Allaf					
	8.1	8.1 Introduction				
	8.2					
		solver	nt extraction process	221		
	8.3	Mater	ial and method	224		
		8.3.1	Raw material	224		
		8.3.2	Phenomenological approach of solvent extraction			
			procedure	225		
		8.3.3	Main intensification ways	228		
		8.3.4	Assessments and characterization	231		
	8.4	Result	ts and discussion	232		
		8.4.1	Oil yields issued from differently assisted operations			
			of solvent extraction	232		
		8.4.2	Kinetics of vegetal oil extraction	233		
		8.4.3	Impact on oil quality	238		
		8.4.4	Specific new desolventation ways	242		
	8.5	Concl	usion	243		
	Refe	erences		243		
9	Mer	nbrane	e separation in food processing	245		
	Wafa Guiga and Marie-Laure Lameloise					
	9.1 Overview of membrane separation processes in food industry					
		9.1.1	Pressure-driven membrane technologies	245		
		9.1.2	Electrically driven membrane technology	248		
		9.1.3	Vapor pressure gradient membranes	250		

	9.2	Theore	tical aspects in membrane separation	250
			Key parameters in membrane separation	250
		9.2.2	Transport theory	252
		9.2.3	Concentration polarization	254
		9.2.4	Membrane fouling	256
	9.3	Membr	rane materials and modules	257
		9.3.1	Materials	257
		9.3.2	Module geometries	258
		9.3.3	Innovations in material manufacturing	260
			Configurations	261
		9.3.5	Separation process performances enhancement	
			techniques	264
		9.3.6	Membrane cleaning	267
	9.4	Membr	rane applications in food processing	268
		9.4.1	Contribution and interest of membranes in the	
			processes of food industry	268
		9.4.2	Purification	270
		9.4.3	Concentration/extraction	273
		9.4.4	Separation and integrated processes	275
		9.4.5	Effluent treatment	277
	9.5	Conclu	ision	281
	Refe	rences		282
10	Extr	usion		289
	Virg	inie Van	ndenbossche, Laure Candy, Philippe Evon,	
			illy and Pierre-Yves Pontalier	
	10.1		luction	289
		10.1.1	Extrusion	289
		10.1.2	2 Twin-screw extruder	290
	10.2		sion cooking	293
			Process	293
		10.2.2	2 Flours	293
		10.2.3	3 Proteins	294
		10.2.4	4 Other applications	295
			5 Mechanical fractionation	296
	10.3 Expression		ession	297
	10.4	-		301
		10.4.1	Lignocellulosic residues	302
		10.4.2	-	306
		10.4.3	-	308
	Refe	311		
		ner read	ing	314
11	Cas	accietar	l oil expression from oilseeds	315
	Gas-	assisieu		010
			emdi and Eugene Vorobiev	010

	11.2	Conven	tional extraction methods of seed and nut oils	317		
		11.2.1	Mechanical expression (pressing)	317		
		11.2.2	Solvent extraction	318		
		11.2.3	Supercritical fluid extraction	318		
	11.3	Gas-ass	sisted mechanical expression	319		
		11.3.1	Fundamentals of gas-assisted mechanical expression			
			technology	319		
		11.3.2	Applications of gas-assisted mechanical expression			
			technology	321		
		11.3.3	Advantages and limitations of gas-assisted mechanical			
			expression technology	328		
	11.4	Conclus	1 0.	330		
	Refer	ences		330		
12	Enca	psulation	n technologies for polyphenol-loaded			
	micro	particle	s in food industry	335		
	Duša	nka A. Pe	opović, Danijel D. Milinčić, Mirjana B. Pešić,			
			ević, Živoslav Lj. Tešić and Viktor A. Nedović			
		Introdu		335		
	12.2	Matrice	es for polyphenol-loaded microparticles production			
			ir application in food	336		
		12.2.1	Polysaccharide-based carrier for phenolic compounds	337		
		12.2.2	Protein-based carrier for phenolic compounds	346		
		12.2.3	Lipid-based carrier for phenolic compounds	348		
	12.3		ues for polyphenol-loaded microparticles production			
			blications	349		
		12.3.1	Spray-drying	349		
			Freeze-drying	351		
			Fluid bead coating	351		
			Extrusion methods	352		
			Emulsification process	353		
			Complex coacervation	354		
		12.3.7	-	354		
		12.3.8	Molecular inclusion	355		
	12.4	Conclus		355		
		owledgm		356		
		ences		356		
		er readin	g	367		
13	Essential oils for preserving foods					
	Chahrazed Boutekedjiret, Amina Hellal, Anne-Sylvie Fabiano-Tixier,					
	Mary	line Aber	rt-Vian and Farid Chemat			
	13.1		ion processes of essential oils: from tradition			
		to innov		369		
		13.1.1	Essential oils: definition, localization, and composition	369		
		13.1.2	Essential oils: recovery methods	371		

		13.1.3 Devices of essential oils extraction	373		
		13.1.4 Innovative techniques	374		
	13.2	Essential oils as antimicrobials	375		
		13.2.1 Applications in meat-based foodstuffs			
		and seafood products	375		
		13.2.2 Applications in dairy products	377		
		13.2.3 Applications in vegetables and fruits	377		
		13.2.4 Applications to cereal products	378		
	13.3	Essential oils as antioxidant agents in food products	378		
		13.3.1 Chemical lipid oxidation	379		
		13.3.2 Antioxidant activity	379		
		13.3.3 Inhibition of lipid autooxidation	381		
		13.3.4 Radical-scavenging tests	384		
	13.4	Future trends	386		
	Refer	ences	387		
14	Pulse	d light as a new treatment to maintain physical			
	and r	nutritional quality of food	391		
	Tatia	na Koutchma			
	14.1	Introduction	391		
	14.2	Mode of action of pulsed and pulsed ultraviolet light	391		
		Advantages and disadvantages of high-intensity light pulses	393		
	14.4	Factors affecting interaction between high-intensity			
		pulses and materials	394		
	14.5	Microbial inactivation mechanism	394		
		14.5.1 Photochemical effect	394		
		14.5.2 Photothermal effect	395		
		14.5.3 Photophysical effect	395		
	14.6	High-intensity light pulses for food preservation	395		
	14.7	Pulsed light effects on quality, enzymes, and functionality	396		
	14.8	Pulsed light sources and equipment	400		
	14.9	Conclusion	400		
	Refer	ences	401		
15		d electric field in green processing and preservation	403		
	of food products				
	Eugene Vorobiev and Nikolai Lebovka				
	15.1	Introduction	403		
		Impact of pulsed electric field on cell tissue and biosuspensions	405		
	15.3	Food processing with pulsed electric field	406		
		15.3.1 Upstream processing	410		
		15.3.2 Downstream processing	413		
	15.4	Conclusion	426		
	Refer	ences	426		

16	Cold	plasma fo	or sustainable food production and processing	431
	N.N. 1	Misra and	l M.S. Roopesh	
	16.1	Introduc	tion	431
	16.2	Cold pla	sma fundamentals	433
		16.2.1	Plasma sources	434
		16.2.2	Plasma chemistry	435
	16.3	Antimic	robial action of plasma species	437
	16.4	In-packa	ge cold plasma: a dry, green, and	
		resource	-efficient process	438
	16.5	Cold pla	sma for water treatment	440
	16.6	Cold pla	sma for sustainable food production	442
	16.7		efficiency and process cost	445
	16.8	Conclusi	ion	446
	Refere	ences		446
17			chnology for food applications	455
		••••	ylène Brianceau, François Chabrier,	
	Pasca	l Ginisty,	Wahbi Jomaa, Jean-François Rochas,	
	Alain		and Marc Valat	
	17.1		ction: approach adopted in this chapter	455
	17.2		le, influencing factors, induced mechanisms	456
			Introduction	456
			Some theoretical aspects of microwaves	456
			An insight into the principles of dielectric heating	458
			Heat and mass transfer in food processing	461
			Associated metrology	462
		17.2.6	Pros and cons of dielectric heating in food	
			processing	464
	17.3		ques at laboratory and industrial scale	464
	17.4		d postprocessing and coupling	464
			Pretreatment	464
			Posttreatment	466
			Coupling	466
	17.5		ations in transformation, food processing, and	
		preserv		467
			Pasteurization-sterilization	467
			Drying	469
		17.5.3		472
		17.5.4	Microwave vacuum drying	473
		17.5.5	Thawing and tempering	473
		17.5.6	Microwave frying	474
	17.6		ations in extraction of food ingredients	475
		17.6.1	Extraction principle	475
		17.6.2	Microwave-assisted extraction principles	476
		17.6.3	Microwave-assisted extraction techniques	477

	17.7	Environmental impact	481
		17.7.1 Introduction	481
		17.7.2 Goal and scope	483
	17.8	Regulation and security	486
		17.8.1 Hazard analysis and critical control	
		points approach	487
	17.9	Upscaling and its applications in industry	489
	17.10	Future trends	489
	Ackn	owledgments	491
	Refer	ences	491
	Furth	er reading	498
18	Solar	as sustainable energy for processing, preservation, and	
	extra	ction	499
	Laila	Mandi, Soukaina Hilali, Farid Chemat and Ali Idlimam	
	18.1	Instrumentation	499
		18.1.1 Thermal solar energy	499
		18.1.2 Photovoltaic energy	499
	18.2	Solar energy in food process engineering	500
	18.3	Solar extraction	500
	18.4	Solar cooking	502
	18.5	Solar drying systems	506
	18.6	Solar pasteurization	507
	18.7	Environmental impacts using solar energy	508
	18.8	Hazard analysis and critical control points and	
		hazard and operability considerations using solar energy	508
	Refer	ences	509
	Furth	er reading	511
Aut	hor In	dex	513
Sub	ject In	dex	545