Emerging Methodologies and Applications in Modelling, Identification and Control

Cloud Control Systems

Analysis, Design and Estimation

Magdi S. Mahmoud

King Fahd University of Petroleum and Minerals Systems Engineering Department Dhahran, Saudi Arabia

Yuanqing Xia

Beijing Institute of Technology School of Automation Beijing, China

Series Editors Stephen Ison Lucy Budd

Contents

About the authors		XV	
Preface			xvii
Ack	nowledgments		xxi
1.	An overvie	ew	
	1.1 Prelimin	aries	1
	1.1.1 F	Real-time distributed control systems	2
	1.1.2 \$	ynopsis of the security problem	3
	1.2 Basics of	cloud control systems	4
	1.2.1 (Cloud control security	5
	1.2.2 E	Different types of cyber attacks	6
	1.2.3 F	Passive versus active attacks	7
	1.2.4 F	undamental requirements	8
	1.2.5 E	Design consideration	11
	1.3 A view o	n modeling cloud control systems	12
	1.3.1 E	Development and activities	14
	1.3.2 A	Architecture of cloud control systems	15
	1.4 Notes		17
2.	Cloud con	trol systems venture	
	2.1 Introduc	tion	19
	2.1.1 (Characteristics	20
	2.1.2	Cloud control system venture	20
	2.1.3 \$	ecurity	21
	2.2 Cloud co	ontrol system security objectives	21
	2.2.1 (Confidentiality	22
	2.2.2 I	ntegrity	22
	2.2.3 A	wailability	23
	2.2.4 F	Reliability	23
	2.2.5 F	Robustness	23
	2.2.6 7	rustworthiness	23
	2.3 Types of	attacks in cloud control system	23
	2.3.1 E	Detection of cyber attacks	25
	2.3.2 E	Bavesian detection with binary hypothesis	25

2.3.3 Weighted least-squares approaches

26

	2.3.4	χ^2 Detector based on Kalman filters	27
	2.3.5	Fault detection and isolation techniques	28
2.4	Denial	-of-service attacks	29
	2.4.1	Approaches of modeling a denial-of-service attack	29
	2.4.2	Secure estimation approaches	31
	2.4.3	Secure control approaches of denial-of-signal attack	32
	2.4.4	Jamming attack	38
2.5	Decep	tion attack	40
	2.5.1	Modeling the deception attack	40
	2.5.2	Secure estimation approaches of the deception attack	42
	2.5.3	Secure control approaches of the deception attack	44
	2.5.4	Replay attack	46
2.6	Notes		47

3. Distributed denial-of-service attacks

3.1 Introd	uction	51
3.2 Metho	ds and tools	52
3.2.1	DDoS strategy	54
3.2.2	Types of DDoS attacks	55
3.3 Detect	tion techniques against DDoS attacks	57
3.3.1	Literature review	57
3.3.2	Signature-based detection technique	57
3.3.3	Anomaly-based detection technique	58
3.3.4	Artificial neural network intrusion detection techniques	58
3.3.5	Genetic algorithm intrusion detection systems	59
3.4 Epilog	ue	59
3.5 Stabili	zation of distributed discrete systems	60
3.5.1	Introduction	60
3.5.2	Distributed cloud control system (DCCS)	62
3.5.3	Characteristics of the denial-of-service attacks	62
3.5.4	Nominal design results	63
3.5.5	A small-gain approach for distributed CPS	66
3.5.6	Stability analysis under denial-of-service attacks	69
3.5.7	Illustrative example	72
3.6 Notes		75

4. Distributed cloud control systems

4.1 Introd	uction and wireless control design challenge	77
4.2 Embe	dded virtual machines	82
4.2.1	Network CCS related work	84
4.2.2	Design flow of embedded virtual machines	85
4.2.3	Platform-independent domain-specific language	86
4.2.4	Control problem synthesis	87
4.3 EVM a	rchitecture	89
4.3.1	Embedded virtual machine extensions to the nano-RK	
	RTOS	90

	4.3.2	Virtual component interpreter	91
	4.3.3	Virtual tasks	91
	4.3.4	Virtual component manager	92
4.4	Virtual	task assignment	93
	4.4.1	General formulation	93
	4.4.2	Problem relaxation	99
4.5	EVM ru	Intime operation	101
	4.5.1	Adaptation to planned and unplanned network changes	101
	4.5.2	Communication schedulability analysis	102
	4.5.3	Computation schedulability analysis	103
4.6	EVM in	nplementation	104
	4.6.1	EVM case study	105
	4.6.2	Limitations of the EVM approach	107
4.7	Wirele	ss control networks	108
	4.7.1	An intuitive overview	108
	4.7.2	Model development	109
4.8	Synthe	sis of an optimal wireless control network	114
	4.8.1	Robustness to link failures	116
	4.8.2	Wireless control networks with observer style updates	117
4.9	Robust	ness to node failure	121
4.10	Contro	l of continuous-time plants	122
4.11	Proces	s control application	125
	4.11.1	Case description	125
	4.11.2	Wireless control network experimental platform	125
	4.11.3	Wireless control networks results	126
4.12	Notes		128
Se	cure st	abilization of distributed systems	
5.1	Introdu	uction	131
5.2	Netwo	rked distributed system	133

5.2	Netwo	rked distributed system	133
	5.2.1	Denial-of-service attacks-frequency and duration	133
5.3	Analyti	ical results	135
	5.3.1	A small-gain approach	135
	5.3.2	Stabilization under denial of service	138
5.4	Approx	ximation of resilience with reduced communication	141
	5.4.1	Zeno-free event-triggered control	142
	5.4.2	Hybrid transmission strategy under DoS	143
5.5	Simula	tion results	145
	5.5.1	Simulation example 1	145
	5.5.2	Simulation example 2	145
5.6	Notes		148

6. False data injection attacks

5.

6.1 Related work	149
6.2 Kalman filter-based systems	151

6.2	2.1 Physical plant	151
6.2	2.2 Data buffer	152
6.2	2.3 Communication network	152
6.2	2.4 Control prediction generator	153
6.2	2.5 Network delay compensator	154
6.3 FC	DI attacks	154
6.3	3.1 Design results	156
6.4 Si	mulation results	159
6.4	4.1 Case 1: A and F are stable	160
6.4	4.2 Case 2: <i>A</i> is stable and <i>F</i> is unstable	161
6.4	4.3 Case 3: <i>A</i> is unstable and <i>F</i> is stable	162
6.5 Ex	perimental results	164
6.	5.1 Case 1: F is stable	165
6.	5.2 Case 2: F is unstable	165
6.6 No	otes	166

7. Stabilization schemes for secure control

7.1 Introd	luction and objectives	169
7.1.1	Process dynamics and ideal control action	171
7.1.2	DoS and actual control action	172
7.1.3	Control objectives	173
7.1.4	Stabilizing control update policies	174
7.2 Input-	to-state stability under denial of service	177
7.2.1	Assumptions of time-constrained denial of service	178
7.2.2	Input-to-state stability under denial of service	179
7.2.3	Disturbance-free case	189
7.2.4	Resilient control logic	190
7.2.5	Periodic sampling logic	190
7.3 Event-	-based periodic sampling logic	191
7.3.1	Self-triggering sampling logic	192
7.3.2	Simulation examples and discussions	193
7.3.3	Numerical example	196
7.3.4	Slow-on-the-average DoS: disturbance-free case	197
7.4 Obser	ver-based secure control	199
7.4.1	Problem formulation	200
7.4.2	Design results	203
7.4.3	Illustrative example I	206
7.5 Stabili	ization of discrete-time systems under DoS attack	208
7.5.1	Preliminaries	211
7.5.2	Discrete-time distributed system	213
7.5.3	Characteristics of the DoS attacks	214
7.5.4	Design results	215
7.5.5	The small-gain approach	218
7.5.6	Stability analysis under DoS attacks	221
7.5.7	Illustrative example II	223
7.6 Notes		226

8. Secure group consensus

9.

8.1	Couple	e-group consensus conditions under denial-of-service	
	attacks	3	229
	8.1.1	Introduction	230
	8.1.2	Algebraic graph theory	231
	8.1.3	Consensus problem	231
	8.1.4	Group consensus	232
	8.1.5	Attack model	234
	8.1.6	First-order group consensus under DoS attack	234
	8.1.7	Simulation studies	241
8.2	Adapti	ve cluster consensus with unknown control coefficients	246
	8.2.1	Introduction	247
	8.2.2	Algebraic graph theory	250
	8.2.3	Consensus	251
	8.2.4	Group consensus	251
	8.2.5	Single-integrator linear dynamics	251
	8.2.6	Single integrator with nonlinear dynamics	253
	8.2.7	Linear double-integrator dynamics	256
	8.2.8	Nonlinear dynamics	257
	8.2.9	Simulation studies	260
	8.2.10	Single integrator with linear dynamics	261
	8.2.11	Single integrator with nonlinear dynamics	261
	8.2.12	Double integrator with linear dynamics	263
	8.2.13	Double integrator with nonlinear dynamics	264
8.3	Notes		266
Су	berse	curity for the electric power system	
9.1	Proble	m description	271
9.2	Risk as	sessment methodology	273
5.2	921	Risk analysis	273
	9.2.2	Risk mitigation	274
9.3	Power	system control security	274
5.0	9.3.1	Model of microgrid system	277
	9.3.2	Observation model and cyber attack	278
	9.3.3	Cyber attack minimization in smart grids	280
	9.3.4	Stabilizing feedback controller	281
9.4	Securit	ty of a smart grid infrastructure	282
	9.4.1	Introduction	283
	9.4.2	A cyber-physical approach to smart grid security	285
	9.4.3	Cybersecurity approaches	286
	9.4.4	System model	287
	9.4.5	Cybersecurity requirements	287
		,	
	9.4.6	Attack model	289
	9.4.6 9.4.7	Attack model Countermeasures	289 293
	9.4.6 9.4.7 9.4.8	Attack model Countermeasures Secure communication architecture	289 293 293
	9.4.6 9.4.7 9.4.8 9.4.9	Attack model Countermeasures Secure communication architecture System and device security	289 293 293 294

	9.4.10	System-theoretic approaches	295
	9.4.11	Security requirements	297
	9.4.12	Attack model	297
	9.4.13	Countermeasures	297
	9.4.14	Bad data detection	297
	9.4.15	The need for cyber-physical security	298
	9.4.16	Defense against replay attacks	300
	9.4.17	Cybersecurity investment	303
9.5	Notes		306

10. Resilient design under cyber attacks

10.1	Introdu	uction	307
10.2	Proble	m statement	309
	10.2.1	System model	310
	10.2.2	Attack monitor	310
	10.2.3	Switching the controller	313
	10.2.4	Simulation results I	316
10.3	Secure	control subject to stochastic attacks	319
	10.3.1	Problem formulation and preliminaries	320
	10.3.2	Design results	324
	10.3.3	Simulation results II	334
10.4	Notes		334

11. Safety assurance under stealthy cyber attacks

11.1 Introduction	339
11.2 Cloud system model subject to cyber attacks	340
11.3 Stealthy deception attack design	343
11.3.1 Actuators are compromised	343
11.3.2 Sensors are compromised	344
11.3.3 Both actuators and sensors are compromised	346
11.3.4 Application to UAV navigation systems	349
11.4 Notes	352

12. A unified game approach under DoS attacks

12.1 Introduction	353
12.2 Problem description	355
12.2.1 Model of NCS subject to DoS attack	355
12.2.2 MTOC and CTOC design	356
12.2.3 Defense and attack atrategy design	357
12.3 MTOC and CTOC control strategies	358
12.4 Defense and attack strategies	361
12.4.1 Development of defense strategies	361
12.4.2 Development of attack strategies	362
12.5 Validation results	364
12.5.1 Building model description	364

	12.5.2	Strategy design	365
	12.5.3	Robust study	366
	12.5.4	Comparative study	367
12.6	2.6 Experiment verification		367
12.7	Notes		369

13. Secure estimation subject to cyber stochastic attacks

13.1 Estimation against stochastic cyber attacks	373
13.1.1 Introduction	374
13.1.2 Problem formulation	375
13.1.3 Secure estimation design results	377
13.1.4 Illustrative example I	388
13.2 Resilience state estimation against integrity attacks	389
13.2.1 Introduction	391
13.2.2 System model	392
13.2.3 Attack model	393
13.2.4 Generic resilient estimator	394
13.2.5 Resilient estimator with L1-penalty	395
13.2.6 Resilience analysis	396
13.2.7 Necessary and sufficient conditions	397
13.2.8 Performance evaluation without attacks	400
13.2.9 Performance evaluation under attacks	401
13.2.10Illustrative example II	403
13.3 Notes	403

14. Cloud-based approach in data centers

405
406
406
407
407
410
411
412
413
414
416
417
419
419
420
421
425
428
429
430

14.4.3	Performance model	430
14.4.4	Data center level model	431
14.4.5	Zone-level controller	434
14.4.6	Data center level controller	436
14.4.7	Simulation results II	438
14.5 Notes		444
References		445
Index		471