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Abstract
Objectives: In this work, the stability constants log β11 of complexes between thiosemicarbazone and metal ions were 
predicted based on the modeling of Quantitative Structure and Property Relationship (QSPR). Methods: The QSPR models 
have been developed by using Multiple Linear Regression (MLR), Principal Component Regression (PCR) and Artificial 
Neural Network (ANN). Findings: The results of QSPR models building have provided very positive results through the 
statistical values of validation. The QSPR models were cross-validated based on critical statistics. The quality of the QSPR 
models was exhibited by the statistical standards as the QSPRMLR model: R2

train = 0.9446, R2
adj = 0.939, Q2

LOO = 0.9262, SE = 
0.529 and Fstat = 160.817; QSPRPCR model: R2

train = 0.949, R2
adj = 0.942, Q2

CV = 0.928, MSE = 0.292, RMSE = 0.540 and Fstat = 
134.617; QSPRANN model with architecture I (7)-HL(10)-O(1): R2

train = 0.986, Q2
CV = 0.984 and R2

test = 0.983. Applications: 
Obviously, the results from this work could serve for designing new thiosemicarbazone derivatives that are helpful in the 
fields of analytical chemistry, pharmacy and environment.

1.  Introduction
Bonding of metal ions with thiosemicarbazone ligands 
in aqueous solution plays an important role as in recent 
studies1, 2 as well as in studies of biological processes3. 
Efforts have been made to design new ligands that can 
be selectively linked to a metal ion and allow metal ion 
extraction1, 3. Now there are many empirical data related 
to the stability constants of thiosemicarbazone-metal 
complexes collected4 – 16. In addition, this provides a good 
opportunity to develop quantitative relationships between 
the structure and stability constants of complexes that can 
be used to design new thiosemicarbazone ligands that 
bind to metal ion17, 18. There are continuous publications 

in the literature showing that the development of QSPR 
models to predict stability constants of complexes using 
multivariate techniques is a good choice1.

On the other side the QSPR models of the stability 
constants of the metal-thiosemicarbazone complexes were 
preceded for a lot of practical applications. The molecular 
activities of thiosemicarbazone compounds and their 
complexes were used to support the analytical chemistry19 
and medicinal areas3. The metal-thiosemicarbazone 
complexes are being applied in the medicinal areas for 
antibacterial, antifungal, anti-malarial, antitumor and 
antiviral activity20 – 22. Furthermore, they are also used to 
catalyze for chemical reactions23 and in the environmental 
area24. In these cases the applicability of QSPR models in 
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practice is not simply due to not enough of the information 
needed to describe the molecules and the details of the 
calculation method.

To solve the problems outlined above, we proceed 
to establish the relationships between the Quantitative 
Structure and Properties (QSPR) related to the stability 
constant (logβ11) of metal-thiosemicarbazone complexes 
Ni2+, Co2+, Mo6+, Cu2+, Mn2+, Zn2+, Ag+, Pb2+, Fe2+ and Zn2+. 
All of these models are based on molecular descriptors 
of complexes, resulting only from 2D and 3D molecular 
calculations. Some 3D molecular descriptors were 
calculated using semi-empirical quantum chemistry with 
new PM7 and PM7/sparkle. Here we report new QSPR 
models for the logβ11 stability constants of 10 transition 
metal ions with a set of diverse thiosemicarbazone ligands 
in aqueous solution at 298 K and 0.1 M ion strength4 – 16. 
The models were cross-validated using an external 
validation process

2.  Materials and Methods

2.1  Data Sets
The experimental stability constants (logβ11) for the M:L 
complexes of transition (Ni2+, Co2+, Mo6+, Cu2+, Mn2+, 
Zn2+, Ag+, Pb2+, Fe2+ and Zn2+) metal ions with different 
thiosemicarbazone ligands in aqueous solution were 
taken from the published literature4 – 16 at standard range 
298 K to 323 K, pH 4 to 10 and an average of ionic strength 
I of 0.1 M. The constants logβ11 have been also adjusted 
to the temperature 298 K to 323 K. Complex structures 
of thiosemicarbazone ligands and metal ions, as well as 
respective logβ11 constants derived from the published 
literature were converted into 2D and 3D structures–Input 

Data waited on as input database of QSARIS program25. 
The 74 structures of training set involve the metal-
thiosemicarbazone complexes containing 19 (Ni2+), 16 
(Co2+), 29 (Cu2+), 7 (Mn2+), 1 (Zn2+), 1 (Mo6+) and 1 (Ag+), 
as given in Table 1. The logβ11 values vary in the ranges 
from 6.489 to 11.210 (Ni2+), from 6.382 to 10.590 (Co2+), 
from 6.179 to 14.560 (Cu2+). The test set includes the 8 
transition metal ions Cu2+, Ni2+, Fe2+, Pb2+, Zn2+, Co2+, 
Mn2+ and Ag+, as shown in Table 2. Thiosemicarbazone 
ligand and metal-ligand complex structures are shown in 
Figure 119.

The difference between the experimental logβ11 
constants may be found for the same complexes of the 
different authors could have relatively high values, ​​as 
shown in Table 1. If a lot of logβ11 constants ​​are available 
for a ligand, then the most recent values or value consistent 
with the different experimental methods are chosen. 
Thus, 19 (Ni2+), 16 (Co2+), 29 (Cu2+), 7 (Mn2+), 1 (Zn2+), 
1 (Mo6+) and 1 (Ag+)-thiosemicarbazone complexes are 
taken for the QSPR modeling of the logβ11 constants, as 
exhibited in Figure 2. The logβ11 constants of complexes 
alter in various ranges, as shown in Table 3. The normal 
distribution of logβ11 values for complexes depicted the 
characteristics of the dataset, as shown in Figure 2.

The metal-thiosemicarbazone complexes are generated 
by the following reaction between a metal ion (M) and a 
thiosemicarbazone ligand (L) in an aqueous solution:

	 pM + qL ⇌ MpLq		 (1)
The reaction occurs this step with p = 1 and q = 1; 

the stability constant β11 is calculated by the following 
expression: 

	
11

[ML]
[M][L]

β = � (2)

Table 1. � The logβ11,exp constants for ML complex types of 20 various ligands with 7 metal ions inaqueous solution. 
And the experimental range between minimal logβ11,exp and maximal logβ11,exp values

No Thiosemicarbazone ligand
Metal ions logβ11 Ref.

R1 R2 R3 R4

1 H H H -C6H2(OH)2OCH3 Ni2+ 6.4886 [28]

2 H H -CH3 -CH=N-NHC6H5 Ni2+
10.890 [33]
11.210 [34]

3 H H H -C9H8NO Ni2+ 7.709 [39]

4 H H H -C10H6OH Ni2+ 9.600 [38]

5 H H H -C6H2(OCH3)2OH Cu2+ 6.2355 [31]

6 H -C6H5 -CH3 -CCH3=N-OH Cu2+
6.179 [32]

7.7559 [32]
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7 H H -CH3 -CH=N-NHC6H5 Cu2+
11.700 [34]
12.300 [34]

8 H H H -C9H5NOH Cu2+ 14.560 [35]

9 H H H -C6H3(OH)OCH3 Cu2+
9.030 [37]
9.830 [32]

10 H H H -C9H8NO Cu2+ 7.796 [39]

11 H H H -C10H6OH Cu2+ 9.780 [38]

12 H H H -C6H2(OH)2OCH3 Co2+ 6.3820 [29]

13 H -CH3 -CH3 -CH=N-NHC6H5 Co2+
10.300 [34]
10.590 [34]

14 H H H -C10H6OH Co2+
7.890 [38]
9.000 [38]

15 H H H -C9H8NO Co2+
7.251 [39]
8.34 [39]

16 H -CH3 -CH3 -CH=N-NHC6H5 Mn2+
9.770 [34]

10.050 [34]

17 H H H -C10H6OH Mn2+
4.660 [38]
5.670 [38]

18 H -C2H5 H -C9H5NOH Zn2+ 6.130 [35]

19 H H H -C6H4-N-(CH3)2 Ag+ 17.200 [36]

20 H H H -C6H2(OCH3)2OH Mo6+ 6.3365 [30]

Table 2.  The log β11 stability constants of 10 complexes of external test set are validated by the models

Ligand

ion

QSPRMLR QSPRPCR QSPRANN

logβ11,exp
R1 R2 R3 R4 logβ11,cal

ARE, 
%

logβ11,cal

ARE, 
%

logβ11,cal

ARE, 
%

H H CH3 -CH=N-NHC6H5 Co2+ 11.754 15.01 11.729 14.76 11.513 12.65 10.22[33]

H H CH3 -CH=N-NHC6H5 Mn2+ 9.448 4.27 9.462 4.13 10.863 10.06 9.87[34]

H H H -C6H5 Ag+ 17.231 11.17 17.355 11.97 15.743 1.57 15.5[36]

H H H -C6H5 Cu2+ 16.982 4.06 17.108 3.34 16.556 6.46 17.7[54]

H H H -C6H3(OH)OCH3 Pb2+ 7.163 9.70 7.159 9.63 6.078 6.93 6.53[37]

H H H -C6H3(OH)OCH3 Fe2+ 7.864 2.26 7.79 1.30 7.020 8.71 7.69[37]

H H H -C6H3(OH)OCH3 Co2+ 8.551 6.62 8.487 5.82 8.228 2.60 8.02[37]

H H H -C6H3(OH)OCH3 Ni2+ 9.045 4.56 8.993 3.97 9.109 5.31 8.65[37]

H H H -C10H6OH Pb2+ 7.234 10.10 7.175 9.20 6.442 1.95 6.57[38]

H H H -C10H6OH Zn2+ 8.467 18.09 8.408 17.26 7.045 1.74 7.17[38]

MARE,% 8.58 MARE,% 8.14 MARE,% 5.80
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2.2  Molecular Descriptors
Optimized structures are wielded for calculating the 
molecular descriptors. The 2D and 3D molecular 
descriptors are calculated by coding in different forms of 
a molecular structure. The molecular descriptors include 
physico-chemistry descriptor LogP; the 2D descriptors 
xp3, xp5, xvch8, SaasC, nelem and nrings; the 3D 
descriptors such as ABSQ, Ovality and Surface25. BIOVIA 
Draw 2017 R2 program was used to re-construct the 2D 
structures of molecules. The topological and quantum 
descriptors were calculated on Lenovo W540 PC using 
the MOPAC2016 a semi-empirical level PM7 and PM7/
sparkle26 and QSARIS program.

The molecular descriptors of each descriptive group 
were used as initial molecular descriptors in the QSPR 
model to construct the various QSPR models using 
different techniques. The predictor selection is one of 
the most important steps in QSPR modeling. For the 
following QSPR modeling, the stability constant log β11 
was transformed as the dependent variable. The QSPRMLR 
models were constructed by the predictor selection 
technique using Genetic Algorithm (GA) of QSARIS25 
and forward technique of REGRESS program27 on Add-
ins in MS-EXCEL25. Besides the QSPRPCR model was also 
built on a XLSTAT2016 program28. The Artificial Neural 

Network model QSPRANN was developed by using the 
Neural Network tool in the MATLAB 2016 program29.

2.3  Regression Analysis
The dataset of 74 complexes is used as a training set. 
A 74-molecules set was performed for MLR and PCR 
regression analysis as a constructing method of the 
QSPR model. The QSPR models were generated by using 
logβ11 constant values as dependent variable and different 
descriptors as independent variables. The cross-validation 
limit with correlation value is set at 0.7; the descriptors in 
the final equation are selected by combining regression 
technique and genetic algorithms to have QSPRMLR and 
QSPRPCR models. The statistical methods used to evaluate 
QSPR models include the number of compounds in 
the regression model, the regression coefficients R2, the 
adjusted R2

a, the number of descriptors in the model 
k, F-test for statistical significance, cross-correlation 
coefficient Q2

cv, predictive correlation coefficients  
R2

pred, and Standard Error (SE).

2.3.1  MLR Analysis
The Multiple Linear Regression analysis (MLR) is used 
to construct a linear relationship between a dependent 
variable y (logβ11) and independent variables x (molecular 
description)30. 

Multiple Regression Analysis (MLR) was used to 
estimate the regression coefficient (R2) by least-squared 
fitting; the Sum of Squared Residual (SSR) values of 
observed and predicted values are minimized27, 28. 
The linear model can produce a linear approximation 
in relation to all observed data points30, 31. In linear 
regression, the dependent variable (logβ11) y depends on 
the molecular descriptors, x. The regression equation has 
the form:

	 1

k

i i
i

y b x c
=

= +∑ � (3)
Here y is dependent variable logβ11, the regression 

coefficient, bi corresponds to the molecular descriptors, 
xi; and c is a constant.

2.3.2  PCR Analysis
Principal Component Regression analysis (PCR) was 
used to evaluate data based on the correlation between 
dependent variables and independent variables28. 

Figure 1.  �Molecular structure: a) Thiosemicarbazone 
ligand and b) Metal-thiosemicarbazone 
complex.

Figure 2.  �The metal-thiosemicarbazone complexes in 
dataset: a) Number of complexes and mean 
values of logβ11; b) Normal distribution curve of 
stability constants logβ11.
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Principal Component Regression analysis is used to find 
the appropriate structure in data sets. The purpose of this 
method is to transfer the correlative variables, replacing 
the original descriptors with the new descriptors called 
the Principal Components (PC). These PCs are related to 
each other and are built in the simple linear combination of 
the original variables. This technique turns the data into a 
new set of axes so that the first few axes reflect most of the 
variables in the data. The first PC (PC1) is determined by 
the maximum variance of the entire dataset. The second 
PC2 (PC2) is the direction that describes the maximum 
variance in the orthogonal subspace of PC125. The next 
components are orthogonal to the previously selected 
components and describe the maximum remaining 
variance. By drawing data on a new set of spindles, it 
can automatically detect the basic structure. The value 
of each point is rotated in a given axis, called the PC 
value. PCA selects a new axis set for data12, 28, 32. Those are 
selected in descending order of the data. The purpose of 
PCR is to evaluate the dependent variables on the basis 
of the selected principal components of the independent 
variables.

2.4  Artificial Neural Network
The Artificial Neural Network (ANN) receives 
the processed input information that is capable of 
communicating by transmitting information through 
interconnected neurons, weighted connections. Some of 
their basic features should be emphasized initially33, 34. 
Therefore, ANN is a Multi-layer Perceptron (MLP); 
MLP can have many hidden layers in architectural style  
I(k)-HL(m)-O(n):

•	 Input variables I(k): x1, x2, ..., xk.
•	 The connection in the network takes place in each 

neuron. Each connection is determined by the weight 
between neurons i and j.

•	 The output variable is composed of n neurons (O (n)): 
yj corresponds to a neuron.

•	 An additional external error variable b (bias) for each 
neuron.

•	 The training process follows the rules of propagation 
in the network, defining the effect through comparison 
with input variables from outside xk.

•	 The activation function sigmoid is chosen, the pro-
cess is evaluated by the correlation between the input 
variable and the output variable yj of a neuron. The 

hyperbolic sigmoid function can be used as a transfer 
function in the input and output data sets. It is given 
in33, 34:

	 ( ) 12

2tan ( )
1 n

a sig n
e

−−
= =

+ � (4)

In the current article, the number of hidden layers and 
the appropriate epoch has been carefully checked with 
trial and error. We used a feed-forward neural network 
with the Levenberg-marquest learning algorithm to train 
it35 – 37. This algorithm seems to be the fastest method for 
training medium-sized feed-forward neural networks. 
The training of the ANN neural network model is 
performed until the average squared error (MSEANN) is 
minimized followed by the comparison of the network 
output with the actual values ​​of the output obtained 
from the test results38. The training process of a neural 
network consists of adjusting the weights and deviations 
of the network to optimize neural network performance. 
The efficiency function for feed-forward neural networks 
is based on the average square error of the ANN model 
(MSEANN). The average squared error between the output 
of the network (yi) and the target output (ti) is given by the 
following formula37

	
( )2

ANN
1

1 n

i iMSE t y
n

= −∑ � (5)

2.5  Validation of QSPR Model	
The optimum method to assess the quality of regression 
models is to perform the internal assessments for QSPR 
models. The validation was mainly done by a Leave-one-
out (LOO) cross-examination, when an observation 
(logβ11) value was excluded from the training set and 
the training data was divided into subsets of size are 
equal25. The model was constructed using these subsets 
and the dependent variable value of the data point was 
not included in the defined subset, which is a predicted 
value. The predicted averages will be the same for R2

train 
and Q2

LOO (the value of the correlation coefficient is 
cross-validated) as all data points would be considered 
sequentially as predicted values in the LOO subset. The 
same procedure is repeated after removing another object 
until all objects have been discarded once. The LOO 
cross-validation leads to statistically significant patterns 
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for each regression model28. R2
train was used the following 

formula:

	

2

2 1
train

2

1

ˆ( )
1

( )

n

i i
i

n

i
i

y y
R

y y

=

=

−
= −

−

∑

∑
� (6)

The QSPR models screened are based on the values 
Q2

LOO for cross-validation set, R2
test for the test set. These 

values are calculated by using formula (6) to validate for 
all models25, 27, 39 – 42.

The adjusted R² value (R2
adj) is the coefficient of 

significance to determine the number of internal variables 
for QSPR models. The value of R2

adj can also be negative 
if the data set does not have a sufficient number of 
observations n. This coefficient is only counted if the user 
is not fixed to the model27 - 28. R2

adj is defined by formula:

	
2 2 2
adj train train

1 (1 )
1

kR R R
N

− = − −  − � (7)
The R2

adj value is used to calibrate R2
train, taking into 

account the number of independent variables used in the 
model. Average square error (MSE)27 is determined by 
following formula:

	

2

1

ˆ( )

1

N

i i
i

y y
MSE

N k
=

−
=

− −

∑
� (8)

Here ŷ, y, and ȳ are predicted, actual and mean values of 
the logβ11. The values of the square root of errors (RMSE) 
are calculated from the square root of the MSE values.

The predictability of the QSPR models can be validated 
by using the average absolute values of the relative errors 
MARE (%):

	
1

,%
,%

n

i
i

ARE
MARE

n
==
∑

� (9)
Where ARE (%) is the absolute value of the residuals. 

They are calculated by the following formula:

	

11,exp 11,cal

11,exp

log log
,% 100

log
ARE

β β
β
−

=
� (10)

Where n is the number of test substances; logβ11,exp 
and logβ11,cal are the experimental and calculated stability 
constants.

3.  Results and Discussion

3.1  Regression Analysis

3.1.1  QSPRMLR Modeling
The QSPRMLRmodel was gone forwardfor modeling 
logβ11 stability constants of the ML complexes of 7 
metal ions 19 (Ni2+), 16 (Co2+), 29 (Cu2+), 7 (Mn2+), 1 
(Zn2+), 1 (Mo6+) and 1 (Ag+) with 74 structurally diverse 
thiosemicarbazone ligands, including 74 log β11 stability 
constant values (Table 3). The QSPRMLR and QSPRPCR 
models were built for 7 transition metal ions using 2D 
and 3D molecular descriptors. Student T-test method was 
used to compare RMSE and R2 values at 95% confidence 
level. Also, correlation coefficients of QSPRMLR model 
are the multiple correlation Rtrain of 0.9719 and cross-
validation correlation QLOO of 0.9624, as shown in  
Figure 3b.

The selected subsets for QSPRMLR models are presented 
in Table 4. The descriptors k was varied in the range 1 to 8. 
The changing descriptors have led to the various changes 
in RMSE, R2

train, Q2
LOO, RMStrain and RMSCV values, as 

shown in Table 4. During the modeling process, the 
dataset is split randomly into the training and test subset, 
in which the training subset contains about 80% of initial 
data set. The QSPRMLR models are cross-evaluated by the 
Leave-one-out method through the statistical value Q2

LOO. 
The statistical parameters such as values R2

train, Q2
LOO, and 

RMSE are used to select a best subset. Therefore the best 
model has highest R2

train and Q2
LOO values and lowest 

RMSE value with suitable number k.
In Table 4 the molecular descriptors are refined 

preliminarily using genetic algorithm. From the 
descriptors of subsets, the QSPRMLR model was re-built 
with the forward technique for the REGRESS system21 on 
Add-Ins MS-EXCEL.

From Table 4, the best subset with k = 7 is selected for 
QSPRMLR modeling, as shown in bold:

logβ11 = 53.803 - 7.024×nelem- 0.070×CosmoArea+ 
0.534×xvp3- 8.185×MaxNeg +8.065×Hmin- 
70.721×xch10 + 0.371×SsCH3� (11)
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With n = 74, R2
train = 0.9446; Q2

LOO = 0.9262; and 
p-values < 0.05; F-stat = 160.8173, RMS = 0.5292.

The results in Table 4 showed that the k value goes 
up to 8 then the values R2

train and Q2
LOO are not increased. 

Thus the statistical values change specifically the values 
RMSEtrain and RMSECV go up. Therefore, the k value goes 
up to 8 then the statistical value changed insignificantly. 
Therefore, the best subset of descriptors with k = 7 is 
selected for QSPRMLR modeling in Equation (11). The best 
QSPRMLR model in bold is shown in Table 4 25, 27.

3.1.2  QSPRPCR Modeling
The best QSPRMLR model (11) based on 7 

molecular descriptors, as listed in Table 4. In this 
work we have also approached to construct the 
QSPRPCR model by using this dataset with 8 
molecular descriptors, as given in Table 4. This model 
was constructed from the results of the Principal 
Components Analysis (PCA). Similarly, the QSPRPCR 

modeling process is implemented by the training set 
containing original data of 80% and the remaindered 
is the test set. The QSPRPCR model is also validated 
by statistical values R2

train, Q2
LOO, explained variance 

and RMSE. The change of principal components in 
QSPRPCR model influences the RMSE values. The 
increment of the components caused the decrement 
of RMSE values for training and validation process, 
respectively, as exhibited in Figure 4. So the best 
QSPRPCR model consists of 7 principal components. 
It can be transformed into a QSPRPCR model of 
the original-molecular descriptors, as shown in  
Equation (12).

The Principal Component Regression (PCR) 
equation is depicted for QSPRPCR modeling with 
statistical values, as following Equation (12):

logβ11 = 54.718–7.011×nelem– 0.0721×Cosmo 
Area+0.544×xvp3–7.040×MaxNeg + 7.944×Hmin– 
79.413×xch10 + 0.352×SsCH3� (12)

With n = 74; R2
train = 0.949; Q2

CV = 0.928;MSE = 
0.292; RMSE = 0.540; Fstat = 134.617.

The QSPRPCR model (12) is statistically significant. 
This equation has the explained variance of 94.9% 
in the stability constants, as influenced in Figure 
4. From Equations (11), (12) the change of the log 
β11 stability constant could be explained by the 
molecular descriptors. The statistically importance 
of the molecular descriptors in the QSPR model can 
be used in the seeking direction of new complexes. 
Consequently, the modeling results may orientate the 
design of new thiosemicarbazone ligands based on 
the structural descriptors to obtain the higher log β11 

stability constants.

Table 4. � The multidimensional QSPRMLR models obtained with based on forward regression technique and a 
Genetic Algorithm to select the suitable subsets. The best model is in bold

k Molecular descriptors in QSPR models R²train Q2
LOO RMStrain RMSCV

1 nelem 0.4988 0.4704 1.5242 1.5560
2 nelem; cosmoarea 0.7180 0.7018 1.1512 1.1676
3 nelem; cosmoarea; xvp3 0.8535 0.8007 0.8359 0.9546
4 nelem; cosmoarea; xvp3; Maxneg 0.8853 0.8291 0.7448 0.8838
5 nelem; cosmoarea; xvp3; Maxneg; Hmin 0.9017 0.8406 0.6947 0.8538
6 nelem; cosmoarea; xvp3; Maxneg; Hmin; xch10 0.9339 0.9057 0.5738 0.6564
7 nelem; cosmoarea; xvp3; Maxneg; Hmin; xch10; SsCH3 0.9446 0.9262 0.5292 0.5809
8 nelem; cosmoarea; xvp3; Maxneg; Hmin; xch10; SsCH3; dipole 0.9446 0.9183 0.5332 0.6110

Table 3. � 74 metal-thiosemicarbazone complexes (n), 
minimum (logβ11, min) and maximum (log 
β11,max) constants of the stability constants 
from the selected data for QSPR model

No Metal ion
Number of 

complexes, n
log β11,min log β11,max

1 Ni2+ 19 6.49 11.21
2 Co2+ 16 6.38 10.59
3 Cu2+ 29 6.18 14.56
4 Mn2+ 7 4.66 10.05
5 Ag+ 1 17.20 17.20
6 Mo6+ 1 6.34 6.34
7 Zn2+ 1 6.13 6.13
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3.2  Construction of QSPRANN Model
For the development of QSPRANN model, the Artificial 
Neural Network was also approached in this work. 
The Artificial Neural Network with the training set of 
74 complexes using back-propagation algorithm was 
implemented, as given in Table 1. The neural network can 
be constructed for prediction of log β11 stability constant 
values of external test set, as shown in Table 2. 

The different iterations of the training process and 
the change of neurons of hidden layer could create the 
several QSPRANN models I(k)-HL(m)-O(n). In Table 2, we 
have shown the best QSPRANN model with architecture 
I(7)-HL(10)-O(1). The developed QSPRANN model based 
on the significant descriptors statistically of QSPRMLR and 
QSPRPCR models.

Therefore the Neural Network architecture I(7)-
HL(10)-O(1) consists of the molecular descriptors 
nelem, cosmo area, xvp3, MaxNeg, Hmin, xch10 and 
SsCH3 as 7 neurons on the input layer; the output layer 
O(1) has 1 neuron as the stability constant log β11; the 
hidden layer HL(10) includes 10 neurons. This three-
layer neural network is trained by quick-propagation 
algorithm combining Levenberg-marquardt algorithm. 

The transfer function hyperbolic sigmoid tangent is used 
to train this neural network I(7)-HL(10)-O(1). The others 
are used in the training process as learning rate of 0.01, 
the momentum of 0.9, the convergent goal of 10-10 and 
the residual function is RMSE. The QSPRANN model I(7)-
HL(10)-O(1) has the statistical values R2

train of 0.9860, 
Q2

CV of 0.9840, and R2
test of 0.9830. These results indicate 

that QSPRANN model I(7)-HL(10)-O(1) is better than 
QSPRMLR and QSPRPCR models. So the QSPRANN modeling 
could explain the variation 98.6% in the data set; and 
the QSPRMLR and QSPRPCR models explain the variation 
94.5% and 94.9%, respectively. The QSPRANN model 
I(7)-HL(10)-O(1) exhibited a better fitness between the 
predicted and the experimental values. This may also be 
found in the statistical values ARE, % and MARE, %, as 
shown in Table 2.

3.3  External Validation
QSPR models must be tested for external validation 
criteria. The authors recommended that in addition 
to the cross-validated (Q2

CV) value. The multiple-
correlation coefficients R have been determined from the 
experimental and the predicted stability constant values 
for an external test set must be close to 1. In this study, we 
used an external data set of 10 metal-thiosemicarbazone 
complexes from the experimental literature to test the 
applicability of the constructed QSPR models, as given in 
Table 2. The QSPR models satisfied the criteria.

The MARE, % values of the QSPR models are also 
calculated, respectively, as shown in Table 2, indicating that 
the QSPRANN model appeared the highest predictability 
and the predicted log β11 stability constant values resulting 
from model QSPRANN are very close to the experimental 
values. In addition, the one-way ANOVA method is used 
to compare the discrepancy between the experimental 
and predicted log β11 stability constant values resulting 
from three QSPR models. Accordingly, the discrepancy 
between them is insignificant (F = 0.068598 < F0.05 = 
2.866266). Thus, we can use the QSPR models to estimate 
the log β11 stability constant of new complexes.

4.  Conclusion
We conclude that the QSPR modeling of transition 
metal complex was implemented by incorporating the 
multivariate regression and the Artificial Neural Network. 
The QSPR models were constructed successfully by the 

Figure 3.  �a) A student’s t test values are to compare the 
R2 values; b) Correlation between predicted vs. 
experimental logβ11 values resulting from the 
QSPRMLR model with values R2

train of 0.9446 and  
Q2

LOO of 0.9262.

Figure 4.  �The influence of component change for quality of 
QSPRPCR model: a) The percentage of explaining 
variance vs. principal components; b) The RMSE 
values vs. principal components.
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selected molecular descriptors by the Genetic Algorithm 
and forward-regression technique. The stability logβ11 
constants of metal-thiosemicarbazone complexes 
generated by the QSPRMLR, QSPRPCR and QSPRANN models 
are a good agreement with experimental data.

The developed QSPR models are statistically 
satisfactory. The applicability of these QSPR models 
promised to predict accurately the stability constants of 
the complexes between new thiosemicarbazone ligands 
with metal ions. The above results indicated that the 
QSPRANN model has the best predictability.
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