PARTIAL DIFFERENTIAL EQUATIONS ## with FOURIER SERIES and BOUNDARY VALUE PROBLEMS Second Edition NAKHLÉ H. ASMAR. University of Missouri ## Contents | | Preface | vi | |---|--|-----| | 1 | A Preview of Applications and Techniques | 1 | | | 1.1 What Is a Partial Differential Equation? 21.2 Solving and Interpreting a Partial Differential Equation 7 | | | 2 | Fourier Series | 17 | | | 2.1 Periodic Functions 18 2.2 Fourier Series 26 2.3 Fourier Series of Functions with Arbitrary Periods 38 2.4 Half-Range Expansions: The Cosine and Sine Series 50 2.5 Mean Square Approximation and Parseval's Identity 53 2.6 Complex Form of Fourier Series 60 2.7 Forced Oscillations 69 | | | | Supplement on Convergence | | | | 2.8 Proof of the Fourier Series Representation Theorem 77 2.9 Uniform Convergence and Fourier Series 85 2.10 Dirichlet Test and Convergence of Fourier Series 94 | | | 3 | Partial Differential Equations in Rectangular Coordinates | 103 | | | 3.1 Partial Differential Equations in Physics and Engineering 104 3.2 Modeling: Vibrating Strings and the Wave Equation 109 3.3 Solution of the One Dimensional Wave Equation: | | | | 3.6 Heat Conduction in Bars: Varying the Boundary Conditions 140 | 3 | | | 3.10 Neumann and Robin Conditions 1803.11 The Maximum Principle 187 | 170 | |---|--|-----| | 4 | Partial Differential Equations in
Polar and Cylindrical Coordinates | 193 | | | 4.1 The Laplacian in Various Coordinate Systems 194 4.2 Vibrations of a Circular Membrane: Symmetric Case 198 4.3 Vibrations of a Circular Membrane: General Case 207 4.4 Laplace's Equation in Circular Regions 216 4.5 Laplace's Equation in a Cylinder 228 4.6 The Helmholtz and Poisson Equations 231 | | | | Supplement on Bessel Functions | | | | 4.7 Bessel's Equation and Bessel Functions 237 4.8 Bessel Series Expansions 248 4.9 Integral Formulas and Asymptotics for Bessel Functions 261 | | | 5 | Partial Differential Equations in Spherical Coordinates | 269 | | | 5.1 Preview of Problems and Methods 270 5.2 Dirichlet Problems with Symmetry 274 5.3 Spherical Harmonics and the General Dirichlet Problem 281 5.4 The Helmholtz Equation with Applications to the Poisson, Heat, and Wave Equations 291 | | | | Supplement on Legendre Functions | | | | 5.5 Legendre's Differential Equation 300 5.6 Legendre Polynomials and Legendre Series Expansions 308 5.7 Associated Legendre Functions and Series Expansions 319 | | | 6 | Sturm-Liouville Theory with Engineering Applications | 325 | | | 6.1 Orthogonal Functions 326 6.2 Sturm-Liouville Theory 333 6.3 The Hanging Chain 346 6.4 Fourth Order Sturm-Liouville Theory 353 6.5 Elastic Vibrations and Buckling of Beams 360 6.6 The Biharmonic Operator 371 6.7 Vibrations of Circular Plates 377 | | | | | | | 7 | The Fourier Transform and Its Applications | 389 | |----|---|-----| | | 7.1 The Fourier Integral Representation 390 7.2 The Fourier Transform 398 7.3 The Fourier Transform Method 411 7.4 The Heat Equation and Gauss's Kernel 420 7.5 A Dirichlet Problem and the Poisson Integral Formula 429 7.6 The Fourier Cosine and Sine Transforms 433 7.7 Problems Involving Semi-Infinite Intervals 440 7.8 Generalized Functions 445 7.9 The Nonhomogeneous Heat Equation 461 7.10 Duhamel's Principle 471 | | | 8 | The Laplace and Hankel Transforms with Applications | 479 | | | 8.1 The Laplace Transform 480 8.2 Further Properties of the Laplace Transform 491 8.3 The Laplace Transform Method 502 8.4 The Hankel Transform with Applications 508 | | | 9 | Finite Difference Numerical Methods | 515 | | | 9.1 The Finite Difference Method for the Heat Equation 516 9.2 The Finite Difference Method for the Wave Equation 525 9.3 The Finite Difference Method for Laplace's Equation 533 9.4 Iteration Methods for Laplace's Equation 541 | | | 10 | Sampling and Discrete Fourier Analysis with
Applications to Partial Differential Equations | 546 | | | 10.1 The Sampling Theorem 547 10.2 Partial Differential Equations and the Sampling Theorem 555 10.3 The Discrete and Fast Fourier Transforms 559 10.4 The Fourier and Discrete Fourier Transforms 567 | | | 11 | An Introduction to Quantum Mechanics | 573 | | | 11.1 Schrödinger's Equation 574 11.2 The Hydrogen Atom 581 11.3 Heisenberg's Uncertainty Principle 590 | | | | Supplement on Orthogonal Polynomials | | | | 11.4 Hermite and Laguerre Polynomials 597 | | 12 | 12.1 Green's Theorem and Identities 612 12.2 Harmonic Functions and Green's Identities 622 12.3 Green's Functions 629 12.4 Green's Functions for the Disk and the Upper Half-Plane 638 12.5 Analytic Functions 645 | |--| | 12.4 Green's Functions for the Disk and the Upper Half-Plane 638 | | | | 12.5 Analytic Functions 645 | | TM+O INDICATION ON THE OTHER PROPERTY OF OTHER PROPERTY OF THE OTHER PROPERTY OTHER PROPERTY OF THE OTHER PROPERTY PR | | 12.6 Solving Dirichlet Problems with Conformal Mappings 663 | | 12.7 Green's Functions and Conformal Mappings 674 | | 12.8 Neumann Functions and the Solution of Neumann Problems 684 | | APPENDIXES | | A Ordinary Differential Equations: | | Review of Concepts and Methods A1 | | A.1 Linear Ordinary Differential Equations A2 | | A.2 Linear Ordinary Differential Equations | | with Constant Coefficients A10 | | A.3 Linear Ordinary Differential Equations | | with Nonconstant Coefficients A21 | | A.4 The Power Series Method, Part I A28 | | A.5 The Power Series Method, Part II A40 | | A.6 The Method of Frobenius A51 | | B Tables of Transforms A65 | | B.1 Fourier Transforms A66 | | | | B.2 Fourier Cosine Transforms A68 | | B.3 Fourier Sine Transforms A69 | | B.4 Laplace Transforms A70 | | References A73 | | 1.2 The Mydroren Atom 585 center on | | Answers to Selected Exercises A75 | | Index A99 | Green's Functions and Conformal Mappings 611